forked from rmcantin/bayesopt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
152 lines (119 loc) · 6.97 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
<!DOCTYPE html>
<html lang="en-us">
<head>
<meta charset="UTF-8">
<title>BayesOpt by rmcantin</title>
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" type="text/css" href="stylesheets/normalize.css" media="screen">
<link href='https://fonts.googleapis.com/css?family=Open+Sans:400,700' rel='stylesheet' type='text/css'>
<link rel="stylesheet" type="text/css" href="stylesheets/stylesheet.css" media="screen">
<link rel="stylesheet" type="text/css" href="stylesheets/github-light.css" media="screen">
</head>
<body>
<section class="page-header">
<h1 class="project-name">BayesOpt</h1>
<h2 class="project-tagline">BayesOpt: A toolbox for bayesian optimization, experimental design and stochastic bandits.</h2>
<a href="https://github.com/rmcantin/bayesopt" class="btn">View on GitHub</a>
<a href="https://github.com/rmcantin/bayesopt/zipball/master" class="btn">Download .zip</a>
<a href="https://github.com/rmcantin/bayesopt/tarball/master" class="btn">Download .tar.gz</a>
</section>
<section class="main-content">
<h1>
<a id="bayesopt-a-bayesian-optimization-library" class="anchor" href="#bayesopt-a-bayesian-optimization-library" aria-hidden="true"><span class="octicon octicon-link"></span></a>BayesOpt: A Bayesian optimization library</h1>
<p>BayesOpt is an efficient implementation of the Bayesian optimization
methodology for nonlinear-optimization, experimental design,
stochastic bandits and hyperparameter tunning. In the literature it is
also called Sequential Kriging Optimization (SKO), Sequential
Model-Based Optimization (SMBO) or Efficient Global Optimization
(EGO).</p>
<p>Bayesian optimization uses a distribution over functions to build a
model of the unknown function for we are looking the extrema, and then
apply some active learning strategy to select the query points that
provides most potential interest or improvement. Thus, it is a
sampling efficient method for nonlinear optimization, design of
experiments or bandits-like problems.</p>
<h2>
<a id="getting-and-installing-bayesopt" class="anchor" href="#getting-and-installing-bayesopt" aria-hidden="true"><span class="octicon octicon-link"></span></a>Getting and installing BayesOpt</h2>
<p>The library can be download from any of this sources:</p>
<ul>
<li>Download: <a href="https://bitbucket.org/rmcantin/bayesopt">https://bitbucket.org/rmcantin/bayesopt</a>
</li>
<li>Mirror: <a href="https://github.com/rmcantin/bayesopt">https://github.com/rmcantin/bayesopt</a>
</li>
<li>Mirror: <a href="http://mloss.org/software/view/453/">http://mloss.org/software/view/453/</a>
</li>
</ul>
<p>You can also get the <em>cutting-edge</em> version from the repositories:</p>
<pre><code>>> hg clone https://bitbucket.org/rmcantin/bayesopt
</code></pre>
<p>or the git mirror:</p>
<pre><code>>> git clone https://github.com/rmcantin/bayesopt
</code></pre>
<p>The install guide and documentation for Windows, Linux and MacOS:</p>
<ul>
<li><a href="http://rmcantin.bitbucket.org/html/">Online docs</a></li>
</ul>
<h2>
<a id="using-bayesopt-for-academic-or-commercial-purposes" class="anchor" href="#using-bayesopt-for-academic-or-commercial-purposes" aria-hidden="true"><span class="octicon octicon-link"></span></a>Using BayesOpt for academic or commercial purposes</h2>
<p>BayesOpt is licensed under the GPL and it is free to use. However,
please consider these recomentations when using BayesOpt:</p>
<ul>
<li>If you use BayesOpt in a work that leads to a <strong>scientific
publication</strong>, we would appreciate it if you would kindly cite BayesOpt
in your manuscript. Cite BayesOpt as:</li>
</ul>
<blockquote>
<p>Ruben Martinez-Cantin, <strong>BayesOpt: A Bayesian Optimization
Library for Nonlinear Optimization, Experimental Design and
Bandits</strong>. Journal of Machine Learning Research, 15(Nov):3735--3739, 2014.</p>
</blockquote>
<p>The paper can be found at <a href="http://jmlr.org/papers/v15/martinezcantin14a.html">http://jmlr.org/papers/v15/martinezcantin14a.html</a>
In addition, if you <strong>use a specific algorithm</strong> (REMBO, GP-Hedge,
etc.), please also cite the corresponding work. The reference for each
specific algorithm can be found in the documentation.</p>
<ul>
<li>Commercial applications may also adquire a <strong>commercial license</strong> or ask for consulting support. Please
contact <a href="mailto:[email protected]">[email protected]</a> for details.</li>
</ul>
<h2>
<a id="getting-involved" class="anchor" href="#getting-involved" aria-hidden="true"><span class="octicon octicon-link"></span></a>Getting involved</h2>
<p>The best place to ask questions and discuss about BayesOpt is the
<a href="https://groups.google.com/forum/#!forum/bayesopt-discussion">bayesopt-discussion mailing
list</a>. Alternatively,
you may directly contact Ruben Martinez-Cantin <a href="mailto:[email protected]">[email protected]</a>.</p>
<p>Please file bug reports or suggestions at: </p>
<ul>
<li>
<a href="https://bitbucket.org/rmcantin/bayesopt/issues">https://bitbucket.org/rmcantin/bayesopt/issues</a> or</li>
<li><a href="https://github.com/rmcantin/bayesopt/issues">https://github.com/rmcantin/bayesopt/issues</a></li>
</ul>
<hr>
<p>Copyright (C) 2011-2015 Ruben Martinez-Cantin <a href="mailto:[email protected]">[email protected]</a></p>
<p>BayesOpt is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.</p>
<p>BayesOpt is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.</p>
<p>You should have received a copy of the GNU General Public License
along with BayesOpt. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.</p>
<hr>
<footer class="site-footer">
<span class="site-footer-owner"><a href="https://github.com/rmcantin/bayesopt">BayesOpt</a> is maintained by <a href="https://github.com/rmcantin">rmcantin</a>.</span>
<span class="site-footer-credits">This page was generated by <a href="https://pages.github.com">GitHub Pages</a> using the <a href="https://github.com/jasonlong/cayman-theme">Cayman theme</a> by <a href="https://twitter.com/jasonlong">Jason Long</a>.</span>
</footer>
</section>
<script type="text/javascript">
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
</script>
<script type="text/javascript">
try {
var pageTracker = _gat._getTracker("UA-41494186-1");
pageTracker._trackPageview();
} catch(err) {}
</script>
</body>
</html>