-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbrain.py
147 lines (114 loc) · 5.16 KB
/
brain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from collections import namedtuple
import random
import torch
from torch import nn
from torch import optim
import torch.nn.functional as F
from params import *
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
BATCH_SIZE = 1
CAPACITY = 5000
Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward'))
class Agent:
def __init__(self):
self.brain = Brain()
def update_q_function(self):
self.brain.replay()
def get_action(self, state, episode):
action = self.brain.decide_action(state, episode)
return action
def memorize(self, state, action, state_next, reward):
self.brain.memory.push(state, action, state_next, reward)
def update_target_q_function(self):
self.brain.update_target_q_network()
class ReplayMemory:
def __init__(self, CAPACITY):
self.capacity = CAPACITY
self.memory = []
self.index = 0
def push(self, state, action, state_next, reward):
if len(self.memory) < self.capacity:
self.memory.append(None)
self.memory[self.index] = Transition(state, action, state_next, reward)
self.index = (self.index + 1) % self.capacity
def sample(self, batch_size):
return random.sample(self.memory, batch_size)
def __len__(self):
return len(self.memory)
class Net(nn.Module):
def __init__(self, n_in, n_mid, n_out):
super(Net, self).__init__()
self.fc1 = nn.Linear(n_in, n_mid)
self.fc2 = nn.Linear(n_mid, n_mid)
self.fc3 = nn.Linear(n_mid, n_out)
def forward(self, x): # 输入state的三个信息
h1 = F.leaky_relu(self.fc1(x))
h2 = F.leaky_relu(self.fc2(h1))
output = self.fc3(h2)
return output
class Brain:
def __init__(self):
self.num_actions = N_SERVER
self.memory = ReplayMemory(CAPACITY)
n_in, n_mid, n_out = 2, 32, N_SERVER
if LOAD_OK:
self.main_q_network = torch.load(PATH)
self.target_q_network = torch.load(PATH)
else:
self.main_q_network = Net(n_in, n_mid, n_out).to(device)
self.target_q_network = Net(n_in, n_mid, n_out).to(device)
self.optimizer = optim.Adam(
self.main_q_network.parameters(), lr=0.0001)
# print(self.main_q_network)
def replay(self):
if len(self.memory) < BATCH_SIZE:
return
self.batch, self.state_batch, self.action_batch, self.reward_batch, self.non_final_next_states = self.make_minibatch()
self.expected_state_action_values = self.get_expected_state_action_values()
self.update_main_q_network()
def decide_action(self, state, episode):
epsilon = 0.5 * (1 / (episode + 1))
if epsilon >= np.random.uniform(0, 1):
# if np.random.randint(1,10) >=2:
self.main_q_network.eval()
with torch.no_grad():
action = self.main_q_network(state).max(1)[1].view(1, 1)
else:
action = torch.LongTensor(
[[random.randrange(self.num_actions)]])
return action
def make_minibatch(self):
transitions = self.memory.sample(BATCH_SIZE)
batch = Transition(*zip(*transitions))
state_batch = torch.cat(batch.state)
action_batch = torch.cat(batch.action)
reward_batch = torch.cat(batch.reward)
non_final_next_states = torch.cat([s for s in batch.next_state
if s is not None])
non_final_next_states = non_final_next_states
return batch, state_batch, action_batch, reward_batch, non_final_next_states
def get_expected_state_action_values(self):
self.main_q_network.eval()
self.target_q_network.eval()
# self.state_action_values = self.main_q_network(self.state_batch).cuda(device).gather(1, self.action_batch)
self.state_action_values = self.main_q_network(self.state_batch).gather(1, self.action_batch.to(device)).to(device)
non_final_mask = torch.ByteTensor(tuple(map(lambda s: s is not None, self.batch.next_state)))
next_state_values = torch.zeros(BATCH_SIZE)
a_m = torch.zeros(BATCH_SIZE).type(torch.LongTensor).to(device)
a_m[non_final_mask] = self.main_q_network(self.non_final_next_states).detach().max(1)[1].to(device)
a_m_non_final_next_states = a_m[non_final_mask].view(-1, 1).to(device)
next_state_values[non_final_mask] = self.target_q_network(self.non_final_next_states).gather(1, a_m_non_final_next_states).detach().squeeze()
# print(self.reward_batch)
# print(next_state_values)
expected_state_action_values = self.reward_batch + GAMMA * next_state_values.to(device)
return expected_state_action_values
def update_main_q_network(self):
self.main_q_network.train()
loss = F.smooth_l1_loss(self.state_action_values,
self.expected_state_action_values.unsqueeze(1))
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def update_target_q_network(self):
self.target_q_network.load_state_dict(self.main_q_network.state_dict())