-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrender_model1.py
896 lines (803 loc) · 39.2 KB
/
render_model1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
#
import math
import os
import cv2 as cv
import neural_renderer as nr
import numpy as np
# torch.cuda.set_device(5)
# # os.environ["CUDA_VISIBLE_DEVICES"] = '3,4'
# torch.backends.cudnn.benchmark = True
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.nn import functional as F
from torchvision import transforms
import pdb
from darknet import Darknet
import imageio
from utils import *
from median_pool import MedianPool2d
# from adv_generator import Generator, weights_init_normal
class MaxProbExtractor(nn.Module):
"""MaxProbExtractor: extracts max class probability for class from YOLO output.
Module providing the functionality necessary to extract the max class probability for one class from YOLO output.
"""
def __init__(self, cls_id, num_cls):
super(MaxProbExtractor, self).__init__()
self.cls_id = cls_id
self.num_cls = num_cls
self.loss_target = lambda obj, cls: obj * cls
def forward(self, YOLOoutput):
# get values neccesary for transformation
if YOLOoutput.dim() == 3:
YOLOoutput = YOLOoutput.unsqueeze(0)
batch = YOLOoutput.size(0)
assert (YOLOoutput.size(1) == (5 + self.num_cls ) * 5)
h = YOLOoutput.size(2)
w = YOLOoutput.size(3)
# transform the output tensor from [batch, 425, 19, 19] to [batch, 80, 1805]
output = YOLOoutput.view(batch, 5, 5 + self.num_cls , h * w) # [batch, 5, 85, 361]
output = output.transpose(1, 2).contiguous() # [batch, 85, 5, 361]
output = output.view(batch, 5 + self.num_cls , 5 * h * w) # [batch, 85, 1805]
output_objectness = torch.sigmoid(output[:, 4, :]) # [batch, 1805]
output = output[:, 5:5 + self.num_cls , :] # [batch, 80, 1805]
# perform softmax to normalize probabilities for object classes to [0,1]
normal_confs = torch.nn.Softmax(dim=1)(output)
# we only care for probabilities of the class of interest (person)
confs_for_class = normal_confs[:, self.cls_id, :]
confs_if_object = output_objectness #confs_for_class * output_objectness
confs_if_object = confs_for_class * output_objectness
confs_if_object = self.loss_target(output_objectness, confs_for_class)
# find the max probability for person
max_conf, max_conf_idx = torch.max(confs_if_object, dim=1)
return torch.mean(max_conf)
class TotalVariation(nn.Module):
"""TotalVariation: calculates the total variation of a patch.
Module providing the functionality necessary to calculate the total vatiation (TV) of an adversarial patch.
"""
def __init__(self):
super(TotalVariation, self).__init__()
def forward(self, adv_patch):
# bereken de total variation van de adv_patch
tvcomp1 = torch.sum(torch.abs(adv_patch[:, :, 1:] - adv_patch[:, :, :-1] + 0.000001), 0)
tvcomp1 = torch.sum(torch.sum(tvcomp1, 0), 0)
tvcomp2 = torch.sum(torch.abs(adv_patch[:, 1:, :] - adv_patch[:, :-1, :] + 0.000001), 0)
tvcomp2 = torch.sum(torch.sum(tvcomp2, 0), 0)
tv = tvcomp1 + tvcomp2
return tv / torch.numel(adv_patch)
class NPSCalculator(nn.Module):
"""NMSCalculator: calculates the non-printability score of a patch.
Module providing the functionality necessary to calculate the non-printability score (NMS) of an adversarial patch.
"""
def __init__(self, printability_file, img_size):
super(NPSCalculator, self).__init__()
self.printability_array = nn.Parameter(self.get_printability_array(printability_file, img_size),
requires_grad=False)
def forward(self, adv_patch):
# calculate euclidian distance between colors in patch and colors in printability_array
# square root of sum of squared difference
color_dist = (adv_patch - self.printability_array.cuda() + 0.000001)
color_dist = color_dist ** 2
color_dist = torch.sum(color_dist, 1) + 0.000001
color_dist = torch.sqrt(color_dist)
# only work with the min distance
color_dist_prod = torch.min(color_dist, 0)[0] # test: change prod for min (find distance to closest color)
# calculate the nps by summing over all pixels
nps_score = torch.sum(color_dist_prod, 0)
nps_score = torch.sum(nps_score, 0)
return nps_score / torch.numel(adv_patch)
def get_printability_array(self, printability_file, side):
printability_list = []
# read in printability triplets and put them in a list
with open(printability_file) as f:
for line in f:
printability_list.append(line.split(","))
printability_array = []
for printability_triplet in printability_list:
printability_imgs = []
red, green, blue = printability_triplet
printability_imgs.append(np.full((side, side), red))
printability_imgs.append(np.full((side, side), green))
printability_imgs.append(np.full((side, side), blue))
printability_array.append(printability_imgs)
printability_array = np.asarray(printability_array)
printability_array = np.float32(printability_array)
pa = torch.from_numpy(printability_array)
return pa
class RenderModel(nn.Module):
def __init__(self, config):
super(RenderModel, self).__init__()
self.config = config
self.min_contrast = 0.8
self.max_contrast = 1.2
self.min_brightness = -0.1
self.max_brightness = 0.1
self.noise_factor = 0.10
# if self.config.cuda is not '-1':
# torch.cuda.set_device(self.config.cuda)
# self.device = torch.device('cuda')
# else:
# self.device = torch.device('cpu')
# if self.config.consistent:
# self.grad_textures = grad_textutres.unsqueeze(-2).unsqueeze(-2).unsqueeze(-2)\
# .expand(self.config.depth * self.config.width * self.config.height, 4, 4, 4, 3)
# else:
# self.grad_textures = grad_textutres
# self.grad_textures = grad_textutres
# self.grad_textures = grad_textutres.expand(self.config.depth * self.config.width * self.config.height,
# 4, 4, 4, 3)
self.darknet_model = Darknet(self.config.cfgfile)
self.darknet_model.load_weights(self.config.weightfile)
self.darknet_model = self.darknet_model.eval().cuda()
# for p in self.darknet_model.parameters():
# p.requires_grad = False
# self.cubic = nn.Parameter(torch.full((1, 4, 4, 4, 3), 0.5).cuda())
# self.Xembedding = torch.nn.Embedding(100, 256)
# self.Yembedding = torch.nn.Embedding(100, 256)
# self.Zembedding = torch.nn.Embedding(100, 256)
# self.linear1 = nn.Linear(768, 192)
# self.linear2 = nn.Linear(256, 64)
# self.linear3 = nn.Linear(256, 64)
# self.linear4 = nn.Linear(192, 192)
# self.softmax = nn.Softmax(dim=2)
# self.convtranspose = nn.ConvTranspose3d(3, 3, (3, 3, 3), stride=1)
self.prob_extractor = MaxProbExtractor(0, 80).cuda()
self.nps_calculator = NPSCalculator(self.config.printfile, self.config.image_size).cuda()
self.total_variation = TotalVariation().cuda()
self.medianpooler = MedianPool2d(7, same=True)
renderer = nr.Renderer(camera_mode='look_at')
renderer.perspective = False
renderer.light_intensity_directional = 0.0
renderer.light_intensity_ambient = 1.0
self.renderer = renderer
def forward(self, universal_logo_raw, vertices, faces, logo_index, target,
bk_image, angle, i_batch, m_batch, train_patch=False, conventional=False):
universal_logo_raw = self.medianpooler(universal_logo_raw.unsqueeze(0)).squeeze(0)
self.renderer.eye = nr.get_points_from_angles(self.config.d, self.config.e, angle)
target_vertices, target_faces, target_textures = target
target_vertices = target_vertices.cuda()
target_faces = target_faces.cuda()
target_textures = target_textures.cuda()
target_images, _, _ = self.renderer(target_vertices, target_faces,
target_textures)
target_image = torch.flip(target_images, [3])
if train_patch:
height, width = universal_logo_raw.shape[1:]
if self.config.logo_ref == 'G':
contour = self.logo_G(self.config.width)
scale = 0.45
elif self.config.logo_ref == 'H':
contour = self.logo_h(self.config.width, self.config.height)
scale = 0.35
contour = contour.unsqueeze(0).unsqueeze(0)
contour = contour.expand(-1, 3, -1, -1).cuda()
# print(contour.shape)
contrast = torch.FloatTensor(1).uniform_(self.min_contrast, self.max_contrast).cuda()
brightness = torch.FloatTensor(1).uniform_(self.min_brightness, self.max_brightness)
brightness = brightness.expand(universal_logo_raw.shape).cuda()
noise = torch.FloatTensor(universal_logo_raw.shape).uniform_(-1, 1) * self.noise_factor
universal_logo = universal_logo_raw * contrast + brightness + noise.cuda()
universal_logo = torch.clamp(universal_logo, min=1e-6, max=0.999999)
logo_patch = torch.where(contour == 0, contour, universal_logo.unsqueeze(0))
logo_patch = F.interpolate(logo_patch, (int(height * scale), int(width * scale)),
mode='bilinear')
l_height, l_width = logo_patch.shape[2:]
t_height, t_width = target_image.shape[2:]
# print(logo_patch.shape)
h_pos, w_pos = 120, int((t_width - l_width) / 2)
# print(h_pos, w_pos)
logo_image = self.pad_logo(logo_patch, h_pos, w_pos)
else:
universal_logo_raw = universal_logo_raw.permute(1, 2, 0).contiguous().view(-1, 3)
vertices = vertices.cuda()
faces = faces.cuda()
# logo_index = self.index_revise(logo_scale)
# pdb.set_trace()
# print(torch.max(logo_index))
# print(logo_index)
# universal_logo = self.medianpooler(universal_logo.unsqueeze(0))
contrast = torch.FloatTensor(1).uniform_(self.min_contrast, self.max_contrast).cuda()
brightness = torch.FloatTensor(1).uniform_(self.min_brightness, self.max_brightness)
brightness = brightness.expand(universal_logo_raw.shape).cuda()
noise = torch.FloatTensor(universal_logo_raw.size()).uniform_(-1, 1) * self.noise_factor
universal_logo = universal_logo_raw * contrast + brightness + noise.cuda()
universal_logo = torch.clamp(universal_logo, min=1e-7, max=0.9999999)
if self.config.consistent:
universal_logo = universal_logo.unsqueeze(-2).unsqueeze(-2).unsqueeze(-2) \
.expand(self.config.depth * self.config.width * self.config.height, 4, 4, 4, 3)
# universal_logo_raw = universal_logo_raw.unsqueeze(-2).unsqueeze(-2).unsqueeze(-2) \
# .expand(self.config.depth * self.config.width * self.config.height, 4, 4, 4, 3)
else:
universal_logo = universal_logo
# universal_logo_raw = universal_logo_raw
if self.config.conventional:
universal_logo = universal_logo[: faces.shape[1]].unsqueeze(0).cuda()
# universal_logo_raw = universal_logo_raw[: faces.shape[1]].unsqueeze(0).cuda()
else:
# print('using multiple version')
universal_logo = universal_logo[logo_index].unsqueeze(0).cuda()
# universal_logo_raw = universal_logo_raw[logo_index].unsqueeze(0).cuda()
# print(grad_textures)
# contour_textures = torch.full(universal_logo.shape, 0.5).cuda()
# print(grad_textures.shape)
adversarial_logo = universal_logo
# adversarial_logo = torch.clamp(universal_logo, min=1e-7, max=0.999999)
# target_images, _, _ = self.renderer(target_vertices, target_faces,
# target_textures) # [batch_size, RGB, image_size, image_size]
# target_image = torch.flip(target_images, [3])
# print(vertices.device)
# print(faces.device)
# print(self.grad_textures.device)
# print(grad_textures.device)
logo_images, _, _ = self.renderer(vertices, faces,
adversarial_logo) # [batch_size, RGB, image_size, image_size]
# raw_logo_images, _, _ = self.renderer(vertices, faces,
# universal_logo_raw)
logo_image = torch.flip(logo_images, [3])
# nps_loss = self.nps_calculator(self.pad_logo(universal_logo_raw))
# tv_loss = self.total_variation(universal_logo_raw.contiguous().view(1, 3, self.config.height, self.config.width))
# nps = self.nps_calculator(logo_images[0])
tv = self.total_variation(logo_image[0])
# nps_loss = nps * 0.01
tv_loss = tv * 2.5
# noise, contrast, brightness
# contrast = torch.FloatTensor(1).uniform_(self.min_contrast, self.max_contrast).cuda()
# brightness = torch.FloatTensor(1).uniform_(self.min_brightness, self.max_brightness)
# brightness = brightness.expand(raw_logo_images.shape).cuda()
# noise = torch.FloatTensor(raw_logo_images.size()).uniform_(-1, 1) * self.noise_factor
# logo_images = raw_logo_images * contrast + brightness + noise.cuda()
# logo_images = torch.clamp(logo_images, min=1e-7, max=0.999999)
# print(logo_images.device)
# print(self.darknet_model.device)
# logo_images = torch.clamp(logo_images, min=0.0, max=0.9999)
merge = torch.where(logo_image == 0., target_image, logo_image)
# image, _, _ = self.renderer(vertices, faces,
# textures) # [batch_size, RGB, image_size, image_size]
# image = torch.flip(merge, [3])
# clean_images = self.paste(target_image, bk_image).detach().cpu().numpy().transpose(0, 2, 3, 1)
# adv_images = self.paste(merge, bk_image).detach().cpu().numpy().transpose(0, 2, 3, 1)
# cur_dir = os.path.dirname(__file__)
# mtl_filepath = os.path.join(cur_dir, 'data/image/material{}_angle{}.pkl'.format(m_batch, angle))
# self.detect(adv_images[0], 'data/pics/clean{}_{}.png'.format(m_batch, angle))
cur_dir = os.path.dirname(__file__)
mtl_filepath = os.path.join(cur_dir, 'data/image_{}/material{}_angle{}.pkl'.format(self.config.logo_ref, m_batch, angle))
w_edge = int(self.darknet_model.height - self.config.image_size)
results = self.paste(merge, bk_image, 0, 0)
results = self.paste(target_image, results, 0, w_edge)
# if angle in [180, 0]:
# self.paper_mtl(merge, logo_image,
# target_image, clean_images, adv_images, m_batch, angle)
# imageio.imwrite('data/pics/clean{}_{}.png'.format(m_batch, angle), 255 * clean_images[0])
# imageio.imwrite('data/pics/adv{}_{}.png'.format(m_batch, angle), 255 * adv_images[0])
# torch.save({'mtl': [target_image.detach().cpu().data, merge.detach().cpu().data],
# 'image': results.detach().cpu().data}, mtl_filepath)
# preserve the images for paper
# if self.config.paper_mtl:
# self.paper_mtl(merge, logo_image,
# target_image, clean_images, adv_images, m_batch, angle)
# imageio.imwrite('data/pics/clean{}_{}.png'.format(m_batch, angle), 255 * clean_images[0])
# imageio.imwrite('data/pics/adv{}_{}.png'.format(m_batch, angle), 255 * adv_images[0])
# torch.save({'mtl': [target_image.detach().cpu(), nerge.detach().cpu()],
# 'image': [clean_images[0], adv_images[0]]}, mtl_filepath)
# pdb.set_trace()
# print(image.device)
# print(bk_image.device)
w_pos = np.random.randint(int(self.darknet_model.height - self.config.image_size))
training_images = self.paste(merge, bk_image, 0, w_pos)
p_img_batch = F.interpolate(training_images, (self.darknet_model.height, self.darknet_model.width),
mode='bilinear')
# img_filepath = os.path.join(cur_dir, 'data/image/image_angle{}_mesh{}.pkl'.format(angle, m_batch))
# if angle in [180, 0, 177, 187, 9] and i_batch == 0:
# torch.save([clean_images[1], adv_images[1]], img_filepath)
# img = p_img_batch.detach().cpu().data[0, :, :, ].numpy()
# img = img.transpose(1, 2, 0)
# img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
# cv.imwrite('data/image{}/result{}.png'.format(self.config.logo_ref, m_batch), img * 255)
output = self.darknet_model(p_img_batch)
# dis_loss = self.dis_loss(output, self.darknet_model.num_classes, self.darknet_model.anchors,
# self.darknet_model.num_anchors, target_id=self.config.target)
# dis_loss = self.prob_extractor(output)
dis_loss = self.dis_loss(output, self.darknet_model.num_classes, self.darknet_model.anchors,
self.darknet_model.num_anchors, 0)
neg_count = self.calc_acc(output, self.darknet_model.num_classes, self.config.target)
# del p_img_batch, img, training_images, image, textures, vertices, faces
# torch.cuda.empty_cache()
# ref_images = torch.randn(training_images.shape).cuda()
# loss = torch.sum((training_images - ref_images) ** 2)
return dis_loss, tv_loss, neg_count
def pad(self, img, pos):
'''
:param img:
:param bk_image:
:return: pasted img
paste 2d img rasterized from mesh onto background imgs
'''
i_h, i_w = img.shape[2:]
h_pad_len = self.darknet_model.height - i_h
w_pad_len = self.darknet_model.width - i_w
# paste_imgs = []
# paste
# h_pos = rd.randint(0, h_pad_len)
# h_pos = int(h_pad_len * 0.75)
# w_pos = int(w_pad_len * 0.5)
# w_pos = rd.randint(0, w_pad_len)
h_top = h_pad_len
h_bottom = 0
w_top = int(pos)
w_bottom = w_pad_len - w_top
# h_top = int((img_size - i_h) / 2) if (img_size - i_h) % 2 == 0 else int((img_size - i_h) / 2) + 1
# h_bottom = int((img_size - i_h) / 2)
# w_top = int((img_size - i_w) / 2) if (img_size - i_h) % 2 == 0 else int((img_size - i_h) / 2) + 1
# w_bottom = int((img_size - i_w) / 2)
# TODO:padiing img
dim = (w_top, w_bottom, h_top, h_bottom)
img = F.pad(img, dim, 'constant', value=0.)
return img
def pad_logo(self, img, posy, posx):
'''
:param img:
:param bk_image:
:return: pasted img
paste 2d img rasterized from mesh onto background imgs
'''
i_h, i_w = img.shape[2:]
h_pad_len = self.config.image_size - i_h
w_pad_len = self.config.image_size - i_w
h_top = int(h_pad_len - posy)
h_bottom = posy
w_top = posx
w_bottom = int(w_pad_len - w_top)
dim = (w_top, w_bottom, h_top, h_bottom)
img = F.pad(img, dim, 'constant', value=0.)
return img
def augment(self, img, bk_image, number=4):
# pdb.set_trace()
img = img
i_h, i_w = img.shape[2:]
size = [1.0]
aug_imgs = []
for scale in size:
rots = torch.linspace(-20, 20, number)
# print(rots)
poses = torch.linspace(self.darknet_model.width, 0, number + 2)
# print(poses)
board = torch.zeros(1, 3, self.darknet_model.height, self.darknet_model.width).cuda()
for pi, (rot, pos) in enumerate(zip(rots, poses[2:])):
# print(poses[2:])
# print(rot, pos)
image = img.clone()
# pallete = torch.zeros(image.shape).cuda()
# channel = pi % 3
# pallete[:, channel, int(i_h * 0.6):, :] = 1.
# color_aug = torch.where(image != 0., pallete, image)
# image = torch.where(color_aug != 0., color_aug, image)
image = F.interpolate(image, (int(scale * i_h), int(scale * i_w)), mode='bilinear')
angle = float(rot) * math.pi / 180
theta = torch.tensor([
[math.cos(angle), math.sin(-angle), 0],
[math.sin(angle), math.cos(angle), 0]
], dtype=torch.float).cuda()
# blank = torch.ones(target.shape)
grid = F.affine_grid(theta.unsqueeze(0), image.size()).cuda()
output = F.grid_sample(image, grid)
output = self.pad(output, pos)
board = torch.where(output == 0., board, output)
# plt.imshow(board[0].numpy().transpose(1, 2, 0))
# plt.savefig('/home/zhouge/Documents/aug{}.pdf'.format(scale), bbox_inches='tight')
aug_imgs.append(board)
aug_imgs = torch.cat(aug_imgs, 0)
aug_len = len(aug_imgs)
aug_imgs = aug_imgs.contiguous().repeat(len(bk_image), 1, 1, 1)
bk_image = bk_image.contiguous().repeat(aug_len, 1, 1, 1)
aug_imgs = torch.where(aug_imgs == 0., bk_image, aug_imgs)
return aug_imgs
def self_atten(self, inputs):
'''
:param inputs:
:return: self attention
'''
# print(inputs.transpose(1,2).shape)
attn = torch.bmm(inputs, inputs.transpose(1, 2))
attn = self.softmax(attn)
inputs = torch.bmm(attn, inputs)
return inputs
# def genrator(self, input):
def dis_loss(self, output, num_classes, anchors, num_anchors, target_id=0, only_objectness=1,
validation=False):
# anchor_step = len(anchors)/num_anchors
anchor_step = len(anchors) // num_anchors
if output.dim() == 3:
output = output.unsqueeze(0)
batch = output.size(0)
assert (output.size(1) == (5 + num_classes) * num_anchors)
h = output.size(2)
w = output.size(3)
# print(output.size())
output = output.view(batch * num_anchors, 5 + num_classes, h * w)
# print(output.size())
output = output.transpose(0, 1).contiguous()
# print(output.size())
output = output.view(5 + num_classes, batch * num_anchors * h * w)
# print(output.size())
all_target_acc = []
det_confs = torch.sigmoid(output[4])
# print(det_confs.shape)
cls_confs = torch.nn.Softmax()(Variable(output[5:5 + num_classes].transpose(0, 1)))
# print(cls_confs.size())
cls_max_confs, cls_max_ids = torch.max(cls_confs, 1)
cls_max_confs = cls_max_confs.view(-1)
# print(cls_max_ids.shape)
cls_max_ids = cls_max_ids.view(-1)
# print(cls_max_ids.shape)
# pdb.set_trace()
# print(cls_max_ids[302])
cls_max_ids = torch.eq(cls_max_ids, target_id).float()
# print(cls_max_ids[302])
det_human_conf = torch.where(cls_max_ids == 0., cls_max_ids, det_confs)
# print(det_human_conf[302])
det_human_conf = det_human_conf.contiguous().view(batch, -1)
# print(det_human_conf.shape)
target_conf, target_conf_id = torch.max(det_human_conf, 1)
# print(target_conf_id)
# print(target_conf)
# print(cls_max_confs[302])
# target_conf_acc = cls_max_confs.contiguous().view(batch, -1)
# for ii, i in enumerate(target_conf_id):
# all_target_acc.append(target_conf_acc[ii][i].detach().cpu().data)
# print(target_conf_acc)
# print(target_conf)
# print('loss_acc:', all_target_acc)
# return torch.mean(target_conf), target_conf.data
# print('loss_acc:', torch.stack(all_target_acc))
# print('target_conf:', target_conf.detach().cpu().data)
return torch.mean(target_conf)
def paste(self, img, p_image, h_pos, w_pos):
'''
:param img:
:param p_image:
:return: pasted img
paste 2d img rasterized from mesh onto background imgs
'''
height, width = p_image.shape[2:]
i_h, i_w = img.shape[2:]
h_pad_len = height - i_h
w_pad_len = width - i_w
# paste
h_pos = int(h_pos)
w_pos = int(w_pos)
h_bottom = h_pos
h_top = h_pad_len - h_bottom
w_top = w_pos
w_bottom = w_pad_len - w_top
# TODO:padiing img
dim = (w_top, w_bottom, h_top, h_bottom)
img = F.pad(img, dim, 'constant', value=0.)
# print(img.shape)
# print(p_image.shape)
pasted_img = torch.where(img == 0., p_image, img)
return pasted_img
def generator(self, inputs):
'''
:param inputs:
:return: generated logo textures for gradient descend
'''
# inputs /= 100
inputs = inputs.long()
batch_size = list(inputs.shape)[0]
x, y, z = inputs.split(1, 1)
x_embed = self.Xembedding(x)
# x_embed = self.linear1(x_embed)
y_embed = self.Yembedding(y)
# y_embed = self.linear2(y_embed)
z_embed = self.Zembedding(z)
# z_embed = self.linear3(z_embed)
# pdb.set_trace()
# self attention
# print(inputs.shape)
embed = torch.cat([x_embed, y_embed, z_embed], 1)
# print(embed.shape)
# inputs = self.embedding(inputs) / 100
# print(inputs.shape)
inputs = self.self_atten(embed).contiguous().view(batch_size, 768)
inputs = F.relu(self.linear1(inputs))
# inputs = (embed + inputs)
# linear generator
# inputs = self.linear1(inputs)
# inputs = self.linear2(inputs)
# conv transpose generator
# inputs = self.linear1(inputs)
# inputs = F.relu(inputs)
# print(inputs.shape)
# inputs = inputs
# inputs = torch.tanh(self.linear4(inputs)).contiguous().view((batch_size, 3, 4, 4, 4))
inputs = torch.tanh(self.linear4(inputs).contiguous().view(batch_size, 3, 4, 4, 4))
# print(inputs.shape)
# return inputs.unsqueeze(0).permute((0, 1, 3, 4, 5, 2))
return inputs.permute((0, 2, 3, 4, 1)).unsqueeze(0)
def calc_acc(self, output, num_classes, target_id):
# anchor_step = len(anchors) // num_anchors
if output.dim() == 3:
output = output.unsqueeze(0)
batch = output.size(0)
assert (output.size(1) == (5 + num_classes) * self.darknet_model.num_anchors)
h = output.size(2)
w = output.size(3)
# print(output.size())
output = output.view(batch * self.darknet_model.num_anchors, 5 + num_classes, h * w)
# print(output.size())
output = output.transpose(0, 1).contiguous()
# print(output.size())
output = output.view(5 + num_classes, batch * self.darknet_model.num_anchors * h * w)
# print(output.size())
all_target_acc = []
det_confs = torch.sigmoid(output[4])
# print(det_confs.shape)
cls_confs = torch.nn.Softmax()(Variable(output[5:5 + num_classes].transpose(0, 1)))
# print(cls_confs.size())
cls_max_confs, cls_max_ids = torch.max(cls_confs, 1)
cls_max_confs = cls_max_confs.view(-1)
# print(cls_max_ids.shape)
cls_max_ids = cls_max_ids.view(-1)
# print(cls_max_ids.shape)
# pdb.set_trace()
# print(cls_max_ids[302])
cls_max_ids = torch.eq(cls_max_ids, target_id).float()
# print(cls_max_ids[302])
det_human_conf = torch.where(cls_max_ids == 0., cls_max_ids, det_confs)
# print(det_human_conf[302])
det_human_conf = det_human_conf.contiguous().view(batch, -1)
# print(det_human_conf.shape)
target_conf, target_conf_id = torch.max(det_human_conf, 1)
# print(target_conf_id)
# print(target_conf)
# print(cls_max_confs[302])
# target_conf_acc = cls_max_confs.contiguous().view(batch, -1)
# for ii, i in enumerate(target_conf_id):
# all_target_acc.append(target_conf_acc[ii][i].detach().cpu().data)
# print(target_conf_acc)
# print(target_conf)
# print('loss_acc:', all_target_acc)
# return torch.mean(target_conf), target_conf.data
# print('loss_acc:', torch.stack(all_target_acc))
# print('target_conf:', target_conf.detach().cpu().data)
# target_conf, target_conf_id = torch.max(det_human_conf, 1)
target_conf = target_conf.detach().cpu().data
count = torch.sum(target_conf < 0.6).float().data
return count
def logo_h(self, width, height):
H = torch.zeros(width, height)
x_pos1 = int(width * 0.4)
x_pos2 = int(width * 0.6)
y_pos1 = int(height * 0.4)
y_pos2 = int(height * 0.6)
H[:x_pos1, :] = 1
H[x_pos2:, :] = 1
H[:, y_pos1:y_pos2] = 1
return H.t()
def logo_G(self, length):
G = torch.zeros(length, length)
radius = (length - 1) / 2
for i in range(length):
for j in range(length):
if radius * 0.6 < ((i - radius) ** 2 + (j - radius) ** 2) ** 0.5 < radius:
G[i][j] = 1
if 0 < math.atan((i - radius) / (j - radius)) < math.pi / 4 and i > int(radius):
G[i][j] = 0
if int(radius * 0.8) < i < int(radius * 1.2) and int(radius) < j:
G[i][j] = 1
if ((i - radius) ** 2 + (j - radius) ** 2) ** 0.5 >= radius:
G[i][j] = 0
return torch.flip(G, [0])
def detect(self, image, savename):
import cv2
use_cuda = 1
num_classes = self.darknet_model.num_classes
if num_classes == 20:
namesfile = 'data/voc.names'
elif num_classes == 80:
namesfile = 'data/coco.names'
else:
namesfile = 'data/names'
image = image * 255
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
boxes = do_detect(self.darknet_model, image, 0.5, 0.4, use_cuda)
class_names = load_class_names(namesfile)
plot_boxes_cv2(image, boxes, savename=savename, class_names=class_names)
def paper_mtl(self, merge, logo_image,
target_image, clean_images, adv_images, m_batch, angle):
if angle in [170, 189, -10, 9]:
# print('hhhhhhhhhhhhhhhhhhhhhhhhhhhhh')
syn_image = merge.detach().cpu().numpy()[0].transpose(1, 2, 0)
# raw_logo_image = raw_logo_image.detach().cpu().numpy()[0].transpose(1, 2, 0)
logo_image = logo_image.detach().cpu().numpy()[0].transpose(1, 2, 0)
target_image = target_image.detach().cpu().numpy()[0].transpose(1, 2, 0)
self.detect(clean_images[0], 'data/pics/clean{}_{}.png'.format(m_batch, angle))
self.detect(adv_images[0], 'data/pics/adv{}_{}.png'.format(m_batch, angle))
imageio.imwrite('data/pics/target{}_{}.png'.format(m_batch, angle), 255 * target_image)
# imageio.imwrite('data/pics/raw_logo{}_{}.png'.format(m_batch, angle), 255 * raw_logo_image)
imageio.imwrite('data/pics/logo{}_{}.png'.format(m_batch, angle), 255 * logo_image)
imageio.imwrite('data/pics/syn{}_{}.png'.format(m_batch, angle), 255 * syn_image)
# def index_revise(self, scale):
#
# list_index = []
# if self.config.depth == 1:
# depth = 0
# else:
# depth = self.config.side_length**2
# # pdb.set_trace()
# for ind in scale:
# x, y, z = ind
# x = x * self.config.side_length
# y = y * self.config.side_length
# z = z * self.config.depth
# # print(x, y, z)
# list_ind = z.long() * depth + y * self.config.side_length + x.long()
# # print(list_ind)
# # list_ind = y * 100 + x
# list_index.append(list_ind)
# list_index = torch.LongTensor(list_index)
# # print(max(list_index))
# return list_index
# data = torch.load('/home/zhouge/Downloads/neural_renderer/examples/data/logo/human1.pkl')
# logo_scale = data['logo_scale']
# logo_scale = data['logo_scale'].long()
# map = torch.zeros(101, 101)
# for scale in logo_scale:
# map[scale[0], scale[1]] = 1
# print(map)
# map = map.numpy()
# from matplotlib import pyplot as plt
#
# plt.imshow(map)
# plt.show()
# map1 = torch.ones(100, 100).numpy()
# plt.imshow(map1)
# plt.show()
# from load_data import *
# input = torch.randn((12, 3, 4, 4, 4))
# conv3d = nn.Conv3d(3, 3, (3, 3, 3), stride=1)
# transconv3d = nn.ConvTranspose3d(3, 3, (3, 3, 3), stride=1, padding=0)
# # embedding = nn.Linear(3, 64)
# # self-attention
# # softmax = nn.Softmax(dim=1)
# # attn = input.matmul(input.transpose(0, 1))
# # input = attn.matmul(input)
# output = conv3d(input)
# print(output.shape)
# output = transconv3d(output)
# # output = embedding(input)
# print(output.shape)
# # print(output)
# class Model(nn.Module):
# def __init__(self, filename_obj, filename_ref, filename_logo, img_size):
# super(Model, self).__init__()
# vertices, faces, textures = nr.load_obj(filename_obj, load_texture=True)
# self.register_buffer('vertices', vertices[None, :, :])
# self.register_buffer('faces', faces[None, :, :])
# t_size = list(textures.size())
# self.register_buffer('textures', textures.requires_grad_(False))
# # load reference image
# with open(filename_logo, 'rb') as logo_file:
# logo_indexs = np.array(pickle.load(logo_file))
#
# grad_t_size = t_size.copy()
# grad_t_size[0] = len(logo_indexs)
# self.grad_textures = nn.Parameter(torch.full(grad_t_size, 0.5).cuda())
# # self.grad_textures = nn.Parameter(torch.randn(grad_t_size).cuda())
#
# grad_indexs = []
# grad_size = t_size.copy()
# grad_size[0] = 1
# for index in logo_indexs:
# grad_index = torch.full(tuple(grad_size), index, dtype=torch.long)
# grad_indexs.append(grad_index)
# self.register_buffer('grad_indexs', torch.cat(grad_indexs, 0).cuda())
# # self.register_buffer('grad_indexs', torch.from_numpy(logo_indexs))
# # textures = textures.scatter_(0, grad_indexs, self.grad_textures)
#
# image_ref = Image.open(filename_ref).convert('RGB')
# self.register_buffer('image_ref', self.pad(image_ref, img_size))
#
# # setup renderer
# renderer = nr.Renderer(camera_mode='look_at')
# renderer.perspective = False
# renderer.light_intensity_directional = 0.0
# renderer.light_intensity_ambient = 1.0
# self.renderer = renderer
#
# def forward(self, img_size, batch_size, i_batch, angle):
# # self.renderer.eye = nr.get_points_from_angles(2.732, 0, np.random.uniform(0, 360))
# # pdb.set_trace()
# # print(self.grad_indexs.shape)
#
# textures = self.textures.scatter(0, self.grad_indexs, self.grad_textures).unsqueeze(0)
# # textures = self.textures.unsqueeze(0)
# # textures[:, self.grad_indexs, :, :, :, :] = self.grad_textures.unsqueeze(0)
# # textures = textures.unsqueeze(0)
# # print(textures.size())
# # start = 172 + i_batch * angle_range
# # end = start + angle_range
# loop = tqdm(range(batch_size))
# training_images = []
# # ref_images = []
# self.renderer.eye = nr.get_points_from_angles(2.0, 0., angle)
# image, _, _ = self.renderer(self.vertices, self.faces,
# textures) # [batch_size, RGB, image_size, image_size]
# image = torch.flip(image, [-1])
#
# for num_i, num in enumerate(loop):
# loop.set_description('Padding')
# # self.renderer.eye = nr.get_points_from_angles(2.0, 0., azimuth)
# # image, _, _ = self.renderer(self.vertices, self.faces,
# # textures) # [batch_size, RGB, image_size, image_size]
# # image = torch.flip(image, [-1])
# training_image = self.paste(image, img_size, i_batch, num / batch_size)
# training_images.append(training_image)
# # ref_images.append(ref_image)
# print(torch.cuda.memory_allocated())
# training_images = torch.cat(training_images, 0)
# del image, textures
# torch.cuda.empty_cache()
# # ref_images = torch.randn(training_images.shape).cuda()
# # loss = torch.sum((training_images - ref_images) ** 2)
# return training_images
#
# def paste(self, img, img_size, i_batch, num):
# # pdb.set_trace()
# # pdb.set_trace()
# # print(img.size())
# i_h, i_w = img.shape[2:]
# # print(i_h, i_w)
# # scale = rd.uniform(0.5, 1)
# scale = 0.75
# # print(scale)
# img = F.interpolate(img, size=[int(scale * i_h), int(scale * i_w)], mode='bilinear')
# img = img.squeeze(0)
# i_h, i_w = img.shape[1:]
# h_pad_len = img_size - i_h
# # h_pos = rd.randint(0, h_pad_len)
# h_pos = int(h_pad_len * i_batch)
#
# w_pad_len = img_size - i_w
# # w_pos = rd.randint(0, w_pad_len)
# w_pos = int(w_pad_len * num)
#
# h_top = h_pos
# h_bottom = h_pad_len - h_top
# w_top = w_pos
# w_bottom = w_pad_len - w_top
# # h_top = int((img_size - i_h) / 2) if (img_size - i_h) % 2 == 0 else int((img_size - i_h) / 2) + 1
# # h_bottom = int((img_size - i_h) / 2)
# # w_top = int((img_size - i_w) / 2) if (img_size - i_h) % 2 == 0 else int((img_size - i_h) / 2) + 1
# # w_bottom = int((img_size - i_w) / 2)
# # TODO:padiing img
# dim = (w_top, w_bottom, h_top, h_bottom)
# img = F.pad(img, dim, 'constant', value=0.)
#
# pasted_img = torch.where(img == 0., self.image_ref, img)
#
# return pasted_img.unsqueeze(0)
#
# def pad(self, image_ref, img_size):
# # w, h = image_ref.size
# # if w == h:
# # padded_img = image_ref
# # else:
# # dim_to_pad = 1 if w < h else 2
# # if dim_to_pad == 1:
# # padding = (h - w) / 2
# # padded_img = Image.new('RGB', (h, h), color=(127, 127, 127))
# # padded_img.paste(image_ref, (int(padding), 0))
# #
# # else:
# # padding = (w - h) / 2
# # padded_img = Image.new('RGB', (w, w), color=(127, 127, 127))
# # padded_img.paste(image_ref, (0, int(padding)))
#
# transform = transforms.Compose([transforms.Resize((img_size, img_size)),
# transforms.ToTensor()])
#
# # padded_img = transform(padded_img).cuda()
# padded_img = transform(image_ref).cuda()
#
# return padded_img