-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_vae.py
151 lines (120 loc) · 5.23 KB
/
train_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
"""
Read and prepare data
"""
import scipy.io as sio
import numpy as np
from sklearn.model_selection import train_test_split
from dataset import ndarrayDataset
import pickle
import os
data_location = "./data/"
energy = np.array(pickle.load(open(os.path.join(data_location,'xrd.txt'),'rb')))
id = np.array(pickle.load(open(os.path.join(data_location,'xrd.txt'),'rb')))
params = np.array(pickle.load(open(os.path.join(data_location,'xrd.txt'),'rb')))
xrd = np.array(pickle.load(open(os.path.join(data_location,'xrd.txt'),'rb')))
#input_mat = data['MP']
# count data in different classes
id = input_mat[:,0]
atom_type = input_mat[:,1]
energy = input_mat[:,2] # target value
X = input_mat[:,3:] # training data
y = energy
# for i in range(7):
# cnt = np.count_nonzero(atom_type == (i+1))
# print("Type %d : %d" % (i+1, cnt))
print(np.max(y),np.min(y))
# First train everything
X_train, X_test, y_train, y_test, l_train, l_test = train_test_split(X, y, atom_type, test_size=0.20, shuffle=True, random_state=9)
# for i in range(7):
# cnt = np.count_nonzero(l_train == i)
# print("Type %d : %d" % (i+1, cnt))
# for i in range(7):
# cnt = np.count_nonzero(l_test == i)
# print("Type %d : %d" % (i+1, cnt))
"""
Body part of train/test
"""
import argparse
import torch
import torch.utils.data
from torch import nn, optim
from torch.utils.data import DataLoader
from loss_function import simplevae_elbo_loss_function, simplevae_elbo_loss_function_with_energy
from model.baselines import SimpleVAE
parser = argparse.ArgumentParser(description='Test')
parser.add_argument('--batch-size', type=int, default=256, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--epochs', type=int, default=2500, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=9, metavar='S',
help='random seed (default: 9)')
parser.add_argument('--log-interval', type=int, default=10000, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--gpu', type=int, default=2, metavar='G',
help='gpu card id (default: 0)')
args = parser.parse_args()
print(args)
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda:%d" % args.gpu if args.cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_dataset = ndarrayDataset(X_train,y_train)
train_loader = DataLoader(train_dataset, batch_size = args.batch_size, shuffle=True)
train_losses = np.zeros((args.epochs))
test_dataset = ndarrayDataset(X_test,y_test)
test_loader = DataLoader(test_dataset, batch_size=1000)
test_losses = np.zeros((args.epochs))
model = SimpleVAE(3600,200,40).to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-5)
def train(epoch):
model.train()
train_loss = 0
correct = 0
for batch_idx, (data, y) in enumerate(train_loader):
data = data.to(device)
y = y.view(-1,1).to(device)
optimizer.zero_grad()
x_pred, mu, logvar, _, y_pred = model(data)
loss, _, eng_loss, _ = simplevae_elbo_loss_function_with_energy(x_pred, data, mu, logvar, y_pred, y)
train_loss += (eng_loss.item())
loss.backward()
optimizer.step()
#pred = y_pred.argmax(dim=1, keepdim=True) # get the index of the max log-probability
#correct += pred.eq(y.view_as(pred)).sum().item()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}/{:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), eng_loss.item()/ len(data),
loss.item() / len(data)))
train_loss /= len(train_loader.dataset)
print('====> Epoch: {} Average Evergy loss: {:.4f}'.format(epoch, train_loss))
return train_loss
def test(epoch):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for i, (data, y) in enumerate(test_loader):
data = data.to(device)
y = y.view(-1,1).to(device)
x_pred, mu, logvar, _, y_pred = model(data)
_, _, eng_loss, _,= simplevae_elbo_loss_function_with_energy(x_pred, data, mu, logvar, y_pred, y)
test_loss += (eng_loss.item())
#pred = y_pred.argmax(dim=1, keepdim=True) # get the index of the max log-probability
#correct += pred.eq(y.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('====> Test set loss: {:.4f}'.format(test_loss))
return test_loss
if __name__ == "__main__":
train_err_list = []
test_err_list = []
for epoch in range(1, args.epochs + 1):
train_err = train(epoch)
test_err = test(epoch)
train_err_list.append(train_err)
test_err_list.append(test_err)
with open('checkpoints/simpleVAE_%d.npz' % args.epochs,'wb') as f:
np.savez(f, train_err = train_err_list, test_err = test_err_list)
torch.save(model.state_dict(),'checkpoints/VAE_%d.pth' % args.epochs)