-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_task.py
226 lines (192 loc) · 11.8 KB
/
eval_task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import numpy as np
import argparse
import os
import cv2
import tensorflow as tf
from collections import namedtuple
import math
from utils.utils import *
parser = argparse.ArgumentParser(description='Evaluation on the cityscapes validation set')
parser.add_argument('--dataset_source', dest='dataset_source', choices=['synthia','syncity','kitti','cityscapes','carla'], default=None, help='synthia,syncity')
parser.add_argument('--dataset_target', dest='dataset_target', choices=['synthia','syncity','kitti','cityscapes','carla'], help='synthia,syncity')
parser.add_argument('--data_path', dest='data_path', help='absolute path to dataset containing folder')
parser.add_argument('--input_list_val_test', dest='input_list_val_test', default='input_list_val_test.txt', help='path of the input pair for validation or testing, image\\timage_sem')
parser.add_argument('--task', dest='task', required=True, choices=['semantic','depth', 'unsupervised-depth'], help='task')
parser.add_argument('--pred_folder', type=str, help='folder containing predictions semantic maps', required=True)
parser.add_argument('--output_path', type=str, default='results.txt', help='output results.txt')
parser.add_argument('--resize', dest='resize', action='store_true', help='resize input images and gt to same size, default no resize')
parser.set_defaults(resize=False)
parser.add_argument('--resize_w', dest='resize_w', type=int, default=-1, help='scale images to this size')
parser.add_argument('--resize_h', dest='resize_h', type=int, default=-1, help='scale images to this size')
parser.add_argument('--central_crop', dest='central_crop', action='store_true', help='central_crop')
parser.set_defaults(central_crop=False)
parser.add_argument('--crop_w', dest='crop_w', type=int, default=-1, help='then crop to this size')
parser.add_argument('--crop_h', dest='crop_h', type=int, default=-1, help='then crop to this size')
### SEMANTIC PARAMS
parser.add_argument('--num_classes', dest='num_classes', type=int, default=11, help='[SEMANTIC] # of classes')
parser.add_argument('--format_pred', type=str, choices=['id','trainId'], default='trainId',help='[SEMANTIC] encoding of predictions, trainId or id')
parser.add_argument('--format_gt', type=str, choices=['id','trainId'], default='trainId',help='[SEMANTIC] encoding of gt, trainId or id')
parser.add_argument('--ignore_label', type=int, default=255, help='[SEMANTIC] label to ignore in evaluation')
parser.add_argument('--convert_to', dest='convert_to', choices=['synthia','syncity','kitti','cityscapes','carla'], help='[SEMANTIC] synthia,syncity, kitti,cityscapes,carla')
parser.add_argument('--convert_pred', dest='convert_pred', action='store_true',help="[SEMANTIC] convert prediction to target classes")
parser.add_argument('--convert_gt', dest='convert_gt', action='store_true', help="[SEMANTIC] convert ground truth to target classes")
parser.set_defaults(convert_pred=False)
### DEPTH PARAMS
parser.add_argument('--min_depth', type=float, help='[DEPTH] minimum depth for evaluation in m', default=0.001)
parser.add_argument('--max_depth', type=float, help='[DEPTH] maximum depth for evaluation in m', default=100)
# parser.add_argument('--f_source', type=float, help='[DEPTH] focal lenght A', default=859.238022326)
# parser.add_argument('--f_target', type=float, help='[DEPTH] focal lenght B', default=859.238022326)
args = parser.parse_args()
dict_focals={
'cityscapes': 2262.52,
'carla': 859.238022326,
'synthia': 847.630211643,
'kitti': -1}
if args.dataset_source == None:
focal_source=dict_focals[args.dataset_target]
else:
focal_source=dict_focals[args.dataset_source]
focal_target=dict_focals[args.dataset_target]
id2trainId = { label.id : label.trainId for label in labels }
id2name = { label.id : label.name for label in labels }
if args.dataset_target=='carla' or args.convert_to=='carla':
trainId2name = { label.trainId : label.name for label in labels_cityscapes_to_carla }
else:
trainId2name = { label.trainId : label.name for label in labels }
def convert_to_train_id(sem,id2trainId=id2trainId):
p = tf.cast(sem,tf.uint8)
m = tf.zeros_like(p)
for i in range(0, len(labels)):
mi = tf.multiply(tf.ones_like(p), id2trainId[i])
m = tf.where(tf.equal(p,i), mi, m)
return m
def convert_to_carla(toconvert):
masks=[]
for i in range(len(labels)):
masks.append(np.where(np.equal(toconvert,np.ones_like(toconvert)*i), np.ones_like(toconvert)*cityscapes2carla[i], 0))
masks.append(np.where(np.equal(toconvert,np.ones_like(toconvert)*255), 255, 0))
masks=np.asarray(masks)
toconvert = np.sum(masks,axis=0)
return toconvert
def compute_errors(gt, pred):
thresh = np.maximum((gt / pred), (pred / gt))
a1 = (thresh < 1.25 ).mean()
a2 = (thresh < 1.25 ** 2).mean()
a3 = (thresh < 1.25 ** 3).mean()
rmse = (gt - pred) ** 2
rmse = np.sqrt(rmse.mean())
rmse_log = (np.log(gt) - np.log(pred)) ** 2
rmse_log = np.sqrt(rmse_log.mean())
abs_rel = np.mean(np.abs(gt - pred) / gt)
sq_rel = np.mean(((gt - pred)**2) / gt)
return abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3
### INPUTS ###
if args.task == 'depth' or args.task == 'unsupervised-depth':
prediction_placeholder = tf.placeholder(tf.float32,shape=[None,None,1])
gt_placeholder = tf.placeholder(tf.float32,shape=[None,None,1])
resize_method = tf.image.ResizeMethod.BILINEAR
elif args.task == 'semantic':
prediction_placeholder = tf.placeholder(tf.int32, shape=[None,None,1])
gt_placeholder = tf.placeholder(tf.int32,shape=[None,None,1])
resize_method = tf.image.ResizeMethod.NEAREST_NEIGHBOR
gt = gt_placeholder
prediction = prediction_placeholder
### RESIZE ###
if args.resize:
prediction = tf.image.resize_images(prediction, [args.resize_h, args.resize_w] ,method=resize_method)
gt = tf.image.resize_images(gt, [args.resize_h, args.resize_w] ,method=resize_method)
### CROP ###
if args.central_crop:
prediction = tf.image.resize_image_with_crop_or_pad(prediction,args.crop_h,args.crop_w)
gt = tf.image.resize_image_with_crop_or_pad(gt,args.crop_h,args.crop_w)
if args.task == 'semantic':
### CONVERT TO IGNORE LABELS IN EVAL ###
if args.format_pred == 'id':
prediction = convert_to_train_id(prediction)
if args.format_gt == 'id':
gt = convert_to_train_id(gt)
### INIT WEIGHTS MIOU
weightsValue = tf.to_float(tf.not_equal(gt,args.ignore_label))
### IGNORE LABELS TO 0, WE HAVE ALREADY MASKED THOSE PIXELS WITH WEIGHTS 0###
gt = tf.where(tf.equal(gt, args.ignore_label), tf.zeros_like(gt), gt)
prediction = tf.where(tf.equal(prediction, args.ignore_label), tf.zeros_like(prediction), prediction)
### ACCURACY ###
acc, update_op_acc = tf.metrics.accuracy(gt,prediction,weights=weightsValue)
### MIOU ###
miou, update_op = tf.metrics.mean_iou(labels=tf.reshape(gt,[-1]),predictions=tf.reshape(prediction,[-1]), num_classes=args.num_classes, weights=tf.reshape(weightsValue,[-1]))
### INIT OP ###
init_op = [tf.global_variables_initializer(), tf.local_variables_initializer()]
miou_value = 0
with tf.Session() as sess:
sess.run(init_op)
with open(args.input_list_val_test) as filelist:
lines = filelist.readlines()
lenght = len(lines)
if args.task == 'depth' or args.task == 'unsupervised-depth':
rms = np.zeros(lenght, np.float32)
log_rms = np.zeros(lenght, np.float32)
abs_rel = np.zeros(lenght, np.float32)
sq_rel = np.zeros(lenght, np.float32)
a1 = np.zeros(lenght, np.float32)
a2 = np.zeros(lenght, np.float32)
a3 = np.zeros(lenght, np.float32)
f_ratio=focal_target/focal_source
for idx,line in enumerate(lines):
print(idx, "/", lenght, end='\r')
img_path = line.split(";")[0].strip()
pred_path = os.path.join(args.pred_folder, img_path.replace("/","_"))
if args.task == 'depth' or args.task == 'unsupervised-depth':
if args.dataset_target=='kitti':
id_img=img_path.split("/")[-1].split("_")[0]
f_target=float(open(os.path.join(args.data_path,"calib",id_img + ".txt")).readlines()[0].split(" ")[1])
f_ratio=f_target/(fpcal_source)
pred_path = pred_path.replace(".png",".npy")
gt_path = os.path.join(args.data_path, line.split(";")[3].strip())
pred_value = np.load(pred_path)
if len(pred_value.shape) == 4:
pred_value = np.squeeze(pred_value,axis=0)
pred_value = pred_value * args.max_depth * f_ratio
pred_value[pred_value < args.min_depth] = args.min_depth
pred_value[pred_value > args.max_depth] = args.max_depth
### READING GT BY DATASET
if args.dataset_target == 'syncity':
f=100 #depth in m
gt_value = np.expand_dims(cv2.imread(gt_path,cv2.IMREAD_UNCHANGED)[:,:,-1]*f,axis=-1)
else:
raw = cv2.imread(gt_path,cv2.IMREAD_UNCHANGED)
raw = raw[:,:,:3].astype(np.float32)
f= 1000 #depth in m
gt_value = raw[:,:,0]*256*256 + raw[:,:,1]*256 + raw[:,:,2]
gt_value = gt_value / (256*256*256 - 1)
gt_value = np.expand_dims(gt_value*f,axis=-1)
pred_value, gt_value = sess.run([prediction,gt],feed_dict={prediction_placeholder :pred_value , gt_placeholder : gt_value})
mask = np.logical_and(gt_value > args.min_depth, gt_value < args.max_depth)
abs_rel[idx], sq_rel[idx], rms[idx], log_rms[idx], a1[idx], a2[idx], a3[idx] = compute_errors(gt_value[mask], pred_value[mask])
elif args.task == 'semantic':
gt_path = os.path.join(args.data_path,line.split(";")[2].strip())
pred_value = cv2.imread(pred_path,cv2.IMREAD_GRAYSCALE)
gt_value = cv2.imread(gt_path,cv2.IMREAD_GRAYSCALE)
if args.convert_to=='carla':
if args.convert_gt:
gt_value = convert_to_carla(gt_value)
if args.convert_pred:
pred_value = convert_to_carla(pred_value)
_,_ =sess.run([update_op_acc,update_op],feed_dict={prediction_placeholder : np.expand_dims(pred_value,axis=-1) , gt_placeholder : np.expand_dims(gt_value,axis=-1)})
acc_value, miou_value =sess.run([acc, miou],feed_dict={prediction_placeholder : np.expand_dims(pred_value,axis=-1) , gt_placeholder : np.expand_dims(gt_value,axis=-1)})
### OUTPUT RESULTS
output_file = open(args.output_path,"w")
if args.task == 'depth' or args.task == 'unsupervised-depth':
output_file.write("{:>10}, {:>10}, {:>10}, {:>10}, {:>10}, {:>10}, {:>10}".format('abs_rel', 'sq_rel', 'rms', 'log_rms', 'a1', 'a2', 'a3') + "\n")
output_file.write("{:10.4f}, {:10.4f}, {:10.3f}, {:10.3f}, {:10.3f}, {:10.3f}, {:10.3f}".format(abs_rel.mean(), sq_rel.mean(), rms.mean(), log_rms.mean(), a1.mean(), a2.mean(), a3.mean()) + "\n")
elif args.task == 'semantic':
confusion_matrix=tf.get_default_graph().get_tensor_by_name("mean_iou/total_confusion_matrix:0").eval()
for cl in range(confusion_matrix.shape[0]):
tp_fn = np.sum(confusion_matrix[cl,:])
tp_fp = np.sum(confusion_matrix[:,cl])
tp = confusion_matrix[cl,cl]
if tp == 0 and (tp_fn + tp_fp - tp) == 0:
IoU_cl = float('nan')
else:
IoU_cl = tp / (tp_fn + tp_fp - tp)
output_file.write(trainId2name[cl] + ": {:.8f}".format(IoU_cl)+"\n")
output_file.write("mIoU: " + str(miou_value) + " acc " + str(acc_value)+"\n")