You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Same issue. The loss is still high after training 320 epoches. It seems that light backbones can't fit this model net well . Is there anything advice on light net with bbox and pose detection task?Thanks!
I changed the backbone of centernet to mobilenet. the loss didn't drop. I trained 500 epoches on pascalVOC dataset. the hm_loss stoped at 2.6. the wh_loss stoped at 9.6 after about 350 epoches and didn't changed.
我用了您的代码运行了一下,loss始终降不到特别低,一开始我在默认设置下运行了一下,hm_loss,wh_loss分别在350个epoch时停在了2.6和9.6并且不再降了,mAP只有0.09,我尝试改了一下wh_weight 和hm_weight 以及学习率等参数,mAP也只升到了0.16。
the opt setting is listed below
==> torch version: 1.4.0 ==> cudnn version: 7605 ==> Cmd: ['main.py', 'ctdet', '--dataset', 'pascal', '--exp_id', 'voc_mbv2_0919', '--save_all', '--arch', 'mbv2_10', '--head_conv', '24', '--lr', '5e-4', '--batch_size', '128', '--gpus', '0,1,2,3,4,5,6,7'] ==> Opt: K: 100 aggr_weight: 0.0 agnostic_ex: False arch: mbv2_10 aug_ddd: 0.5 aug_rot: 0 batch_size: 128 cat_spec_wh: False center_thresh: 0.1 chunk_sizes: [16, 16, 16, 16, 16, 16, 16, 16] data_dir: /home/xiashaobang/Documents/CenterNet/src/lib/../../data dataset: pascal debug: 0 debug_dir: /home/xiashaobang/Documents/CenterNet/src/lib/../../exp/ctdet/voc_mbv2_0919/debug debugger_theme: white demo: dense_hp: False dense_wh: False dep_weight: 1 dim_weight: 1 down_ratio: 4 eval_oracle_dep: False eval_oracle_hm: False eval_oracle_hmhp: False eval_oracle_hp_offset: False eval_oracle_kps: False eval_oracle_offset: False eval_oracle_wh: False exp_dir: /home/xiashaobang/Documents/CenterNet/src/lib/../../exp/ctdet exp_id: voc_mbv2_0919 fix_res: True flip: 0.5 flip_test: False gpus: [0, 1, 2, 3, 4, 5, 6, 7] gpus_str: 0,1,2,3,4,5,6,7 head_conv: 24 heads: {'hm': 20, 'wh': 2, 'reg': 2} hide_data_time: False hm_hp: True hm_hp_weight: 1 hm_weight: 1 hp_weight: 1 input_h: 512 input_res: 512 input_w: 512 keep_res: False kitti_split: 3dop load_model: lr: 0.0005 lr_step: [100, 300] master_batch_size: 16 mean: [[[0.485 0.456 0.406]]] metric: loss mse_loss: False nms: False no_color_aug: False norm_wh: False not_cuda_benchmark: False not_hm_hp: False not_prefetch_test: False not_rand_crop: False not_reg_bbox: False not_reg_hp_offset: False not_reg_offset: False num_classes: 20 num_epochs: 500 num_iters: -1 num_stacks: 1 num_workers: 4 off_weight: 1 output_h: 128 output_res: 128 output_w: 128 pad: 31 peak_thresh: 0.2 print_iter: 0 rect_mask: False reg_bbox: True reg_hp_offset: True reg_loss: l1 reg_offset: True resume: False root_dir: /home/xiashaobang/Documents/CenterNet/src/lib/../.. rot_weight: 1 rotate: 0 save_all: True save_dir: /home/xiashaobang/Documents/CenterNet/src/lib/../../exp/ctdet/voc_mbv2_0919 scale: 0.4 scores_thresh: 0.1 seed: 317 shift: 0.1 std: [[[0.229 0.224 0.225]]] task: ctdet test: False test_scales: [1.0] trainval: False val_intervals: 50 vis_thresh: 0.3 wh_weight: 0.1
Thank you for your excellent work
The text was updated successfully, but these errors were encountered: