-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFUN_DistrPlot_GE.R
202 lines (160 loc) · 6.41 KB
/
FUN_DistrPlot_GE.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
## Build files for GSEA official input
FUN_DistrPlot_GE = function(GeneExp.df,
TarGeneName = TarGene_name, GroupSet = GeneExpSet.lt,
Save.Path = Save.Path, ExportName = ExportName
){
##### Load Packages #####
if(!require("tidyverse")) install.packages("tidyverse")
if(!require("patchwork")) install.packages("patchwork")
# if(!require("eoffice")) install.packages("eoffice")
library(tidyverse)
library(patchwork)
# library(eoffice)
##### Extract Target gene and Statistics ####
# Extract data with TarGeneName
TarGene_Mean <- GeneExp.df[TarGeneName,] %>%
as.numeric() %>%
mean()
# rowMeans(data.matrix(TarGene))
TarGene_SD <- GeneExp.df[TarGeneName,] %>%
as.numeric() %>%
sd()
# Quartile
TarGene_Q <- GeneExp.df[TarGeneName,] %>%
as.numeric() %>%
quantile()
##### Basic DistPlt Function ####
## reshape df
data <- reshape2::melt(GeneExp.df[TarGeneName,] %>% as.numeric())
## Set the color
Custom.clr <- list(rect="#ffd5b5", line="#c95f22",text="#c95f22")
## Line.Set
Line1V = GroupSet[["LowerCutoff"]]
Line2V = GroupSet[["LowerCutoff"]]
Line3V = GroupSet[["UpCutoff"]]
DistPlt_Ori <- function(data,Line1V,Line2V,Line3V,Custom.clr,TarGene = TarGeneName ,Text_Basic.set = c("L1","L2","L3")) {
TGeneDen.p <- ggplot(data,aes(value,fill=value, color=value)) +
xlab("Expression level") +
geom_density(alpha = 0.6, fill = "lightgray") +
geom_rug() + theme_bw()
## Plot Mean and SD
TGeneDen_SD.p <- FUN_ggPlot_vline(TGeneDen.p,
data,
Line.clr = Custom.clr,
Line1 = Line1V,
Line2 = Line2V,
Line3 = Line3V,
Text.set = Text_Basic.set)
TGeneDen_SD.p %>% FUN_BeautifyggPlot(LegPos = c(0.9, 0.8),AxisTitleSize=1.7) +
labs(title= TarGene, x ="Expression level", y = "Density") -> TGeneDen_SD.p
return(TGeneDen_SD.p)
}
DistPlt_Ori(data,Line1V,Line2V,Line3V,Custom.clr)
##### Set group conditions ####
if(GroupSet$GEGroupMode == "Mean1SD"){
Line1V = TarGene_Mean+TarGene_SD
Line2V = TarGene_Mean
Line3V = TarGene_Mean-TarGene_SD
Text.set = c("Mean+1SD","Mean","Mean-1SD")
}else if(GroupSet$GEGroupMode == "Mean2SD"){
Line1V = TarGene_Mean+2*TarGene_SD
Line2V = TarGene_Mean
Line3V = TarGene_Mean-2*TarGene_SD
Text.set = c("Mean+2SD","Mean","Mean-2SD")
}else if(GroupSet$GEGroupMode == "Mean3SD"){
Line1V = TarGene_Mean+3*TarGene_SD
Line2V = TarGene_Mean
Line3V = TarGene_Mean-3*TarGene_SD
Text.set = c("Mean+3SD","Mean","Mean-3SD")
}else if(GroupSet$GEGroupMode == "Mean"){
Line1V = TarGene_Mean
Line2V = TarGene_Mean
Line3V = TarGene_Mean
Text.set = c("Mean","Mean","Mean")
}else if(GroupSet$GEGroupMode == "Quartile"){
Line1V = TarGene_Q[4]
Line2V = TarGene_Q[3]
Line3V = TarGene_Q[2]
Text.set = c("Q3","Q2","Q1")
}else if(GroupSet$GEGroupMode == "Median"){
Line1V = TarGene_Q[3]
Line2V = TarGene_Q[3]
Line3V = TarGene_Q[3]
Text.set = c("Q2","Q2","Q2")
}else if(GroupSet$GEGroupMode == "Customize"){
Line1V = Line1V
Line2V = Line2V
Line3V = Line3V
Text.set = c("LHigh","LHigh","LLow")
}else{
Line1V = TarGene_Mean+TarGene_SD
Line2V = TarGene_Mean
Line3V = TarGene_Mean-TarGene_SD
Text.set = c("Mean+1SD","Mean","Mean-1SD")
}
TGeneDenR.p <- DistPlt_Ori(data,Line1V,Line2V,Line3V,Custom.clr,Text_Basic.set = Text.set)
TGeneDenR.p
##### Visualization #####
## https://www.jianshu.com/p/9e5b7ffcf80f
## Set the color
Mean_SD.clr <- list(rect="#ecbdfc", line="#994db3",text="#6a3b7a" )
Mean_Q.clr <- list(rect="#abede1", line="#12705f",text="#12705f" )
## Plot Mean and SD
TGeneDen_SD.p <- DistPlt_Ori(data,
Line1V = TarGene_Mean+TarGene_SD,
Line2V = TarGene_Mean,
Line3V = TarGene_Mean-TarGene_SD,
Mean_SD.clr,
Text_Basic.set = c("Mean+1SD","Mean","Mean-1SD"))
## Plot Quartiles
TGeneDen_Q.p <- DistPlt_Ori(data,
Line1V = TarGene_Q[4],
Line2V = TarGene_Q[3],
Line3V = TarGene_Q[2],
Mean_Q.clr,
Text_Basic.set = c("Q3","Q2","Q1"))
## Plot Quartiles & Mean and SD
TGeneDen_SD_Q.p <- FUN_ggPlot_vline(TGeneDen_SD.p,data,
Line.clr = Mean_Q.clr,
Line1 = TarGene_Q[4],
Line2 = TarGene_Q[3],
Line3 = TarGene_Q[2],
Text.set = c("Q3","Q2","Q1"),
Text.yPos = 0.35,
rectP = list(xWidth=0.015, yminP=0.3, ymaxP=0.4,alpha=0.8)
)
TGeneDen_SD_Q.p %>% FUN_BeautifyggPlot(LegPos = c(0.9, 0.8),AxisTitleSize=1.7) +
labs(title= TarGeneName, x ="Expression level", y = "Density") -> TGeneDen_SD_Q.p
#### Export PDF ####
pdf(
file = paste0(Save.Path,"/DensityPlot_",ExportName,".pdf"),
width = 10, height = 8
)
print(TGeneDenR.p)
print(TGeneDen_SD.p)
print(TGeneDen_Q.p)
print(TGeneDen_SD_Q.p)
dev.off()
# #### Export PPT ####
# TGeneDen_SD_Q.p %>% FUN_BeautifyggPlot(LegPos = c(0.9, 0.8),AxisTitleSize=1.7,
# OL_Thick = 1.5) +
# labs(title= TarGeneName,
# x ="Expression level", y = "Density") -> TGeneDen_SD_Q2.p
#
# topptx(TGeneDen_SD_Q2.p,paste0(Save.Path,"/DensityPlot_",ExportName,"_",TarGeneName,".pptx"))
#
# rm(TGeneDen_SD_Q2.p)
##### Note #####
## Finding Peak Values For a Density Distribution
# http://ianmadd.github.io/pages/PeakDensityDistribution.html
which.max(density(data$value)$y)
max(density(data$value)$y)
## Plot multiple gene
## Set Output
Output <- list()
Output[["TGeneDenR.p"]] <- TGeneDenR.p
Output[["TGeneDen_SD.p"]] <- TGeneDen_SD.p
Output[["TGeneDen_Q.p"]] <- TGeneDen_Q.p
Output[["TGeneDen_SD_Q.p"]] <- TGeneDen_SD_Q.p
return(Output)
}