-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_curvature.m
92 lines (90 loc) · 2.52 KB
/
main_curvature.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
clc;
clear;
close all;
addpath("data\");
addpath("functions\");
%% Load data
load("data_c1.mat");
% load("data_c4.mat");
t1 = data(1, :);
t2 = data(2, :);
alpha = data(3, :);
N = 10000;
err1 = 1e-4;
g = cell(1, N);
X = cell(1, N);
v1 = zeros(1, N);
v2 = zeros(1, N);
for j = 1: N
% calculate g, lie group, SE(2)
g{j} = [cos(alpha(j)) -sin(alpha(j)) t1(j);
sin(alpha(j)) cos(alpha(j)) t2(j);
0 0 1];
% calculate X, lie algebra, se(2)
X{j} = logm(g{j});
v1(j) = X{j}(1, 3);
v2(j) = X{j}(2, 3);
end
% vector x
x = [v1; v2; alpha];
% calculate the mean and covariance
[mu_c, sigma_c] = cal_mc_cert(data, N);
[mu_exp, sigma_exp] = cal_mc_exp(g, N, err1);
% normalizing factor
c = (2*pi)^(3/2)*abs(det(sigma_c))^(1/2);
pdf_exp = zeros(1, N);
% Samples data in multidimensional Gaussian pdf
for m = 1: numel(g)
g_exp = g{m};
y_exp = vee(logm(mu_exp^(-1)*g_exp));
pdf_exp(m) = exp(-(1/2)*(y_exp'*sigma_exp^(-1)*y_exp))/c;
end
pdf_c = zeros(1, N);
for m = 1: size(x, 2)
x1 = data(:, m);
pdf_c(m) = exp(-(1/2)*((x1 - mu_c)'*sigma_c^(-1)*(x1 - mu_c)))/c;
end
%% Meshgrid
mN = 100;
dx = 0.2;
dy = 0.2;
[xq, yq] = meshgrid(linspace(min(t1) - dx, max(t1) + dx, mN), linspace(min(t2) - dy, max(t2) + dy, mN));
thetaq = atan2(yq, xq) + pi/4; % add pi/4
%% Certesian
f_c = zeros(1, numel(xq));
for j = 1: numel(xq)
x2 = [xq(j); yq(j); thetaq(j)];
f_c(j) = exp(-(1/2)*((x2 - mu_c)'*sigma_c^(-1)*(x2 - mu_c)))/c;
end
f_c = reshape(f_c, size(xq));
%% Exponential
mesh_g = cell(1, numel(xq));
f_exp = zeros(1, numel(xq));
for t = 1: numel(xq)
mesh_g{t} = [cos(thetaq(t)) -sin(thetaq(t)) xq(t);
sin(thetaq(t)) cos(thetaq(t)) yq(t);
0 0 1];
g_exp = mesh_g{t};
y_exp = vee(logm(mu_exp^(-1)*g_exp));
f_exp(t) = exp(-(1/2)*(y_exp'*sigma_exp^(-1)*y_exp))/c;
end
f_exp = reshape(f_exp, size(xq));
%% Figure
plot(t1, t2, 'o', MarkerEdgeColor = [102/255 178/255 255/255], MarkerFaceColor = [102/255 178/255 255/255], MarkerSize = 4);
hold on;
tao = -pi/2: (pi/2)/100: 0;
curve_x = 1*cos(tao);
curve_y = 1*sin(tao) + 1;
plot(curve_x, curve_y, 'k--', LineWidth = 2.5);
max_f_c = max(f_c, [], "all");
min_f_c = min(f_c, [], "all");
mid_f_c = (min_f_c + max_f_c)/2;
dz_c = 0.15;
level = [min_f_c + dz_c, (min_f_c + mid_f_c)/3, mid_f_c];
contour(xq, yq, f_c, level, 'r', LineWidth = 2);
contour(xq, yq, f_exp, level, 'b', LineWidth = 2);
legend('Samples', 'Ideal trajectory', 'XY pdf', 'Exp pdf', Location='southeast');
xlim([-0.5 2]);
ylim([-0.5 1.5]);
xlabel('X Position');
ylabel('Y Position');