-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathRootTipPaths.py
243 lines (212 loc) · 8.79 KB
/
RootTipPaths.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
'''
RootTipPaths.py
This module is used to compute the RTPs and the RTP skeleton as described in the paper.
The code is free for non-commercial use.
Please contact the author for commercial use.
Please cite the DIRT Paper if you use the code for your scientific project.
Bucksch et al., 2014 "Image-based high-throughput field phenotyping of crop roots", Plant Physiology
-------------------------------------------------------------------------------------------
Author: Alexander Bucksch
School of Biology and Interactive computing
Georgia Institute of Technology
Mail: [email protected]
Web: http://www.bucksch.nl
-------------------------------------------------------------------------------------------
Copyright (c) 2014 Alexander Bucksch
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
* Neither the name of the DIRT Developers nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
'''
'''
# external library imports
'''
import numpy as np
import scipy.optimize as sp
import graph_tool.topology as gt
'''
# standard python imports
'''
import time
class RootTipPaths(object):
'''
classdocs
'''
def __init__(self, io):
'''
Constructor
'''
self.__RTP=[]
self.__io=io
self.__id=io.getID()
self.__currentIdx=io.getCurrentID()
self.__medianTipDiameter=0.0
self.__meanTipDiameter=0.0
self.__90TipDiameter=0.0
self.__expF=0.0
self.__tips=[]
self.__rootingDepth=0.0
self.__rootWidth=0.0
def compareTwoOrderedLists(self,l1,l2):
if len(l1)>len(l2): l1=l1[:len(l2)]
if len(l1)<len(l2): l2=l2[:len(l1)]
half=len(l1)/2
split=0
if l1[half] == l2[half]:
if half==0: return 0
elif half==len(l1)-1:return len(l1)-1
elif l1[half+1] == l2[half+1]:
split=self.compareTwoOrderedLists(l1[half:],l2[half:])
else:
split=0
return half+split
else:
if half==0: return -1
split=self.compareTwoOrderedLists(l1[:half],l2[:half])
return split
def getAllTips(self):
return self.__tips
def model_func(self,t, A, K, C):
return A * np.exp(K * t) + C
def model_func_dia(self,t, A, K, C, dia):
return A * dia**(K * t) + C
def fit_exp_nonlinear(self,t, y,dia):
opt_parms, _ = sp.curve_fit(self.model_func, t, y, maxfev=100000)
A, K, C = opt_parms
fit_y = self.model_func(t, A, K, C)
return fit_y ,A,K,C
def fit_exp_linear(self, t, y, C,dia):
y = np.array(y) - C
y = np.log(y)
K, A_log = np.polyfit(t, y, 1)
A = np.exp(A_log)
fit_y = self.model_func(np.array(t), A, K, C)
return fit_y ,A,K,C
def getRootTipPaths(self,thickestPath,G):
print('Calculating Root-Tip Paths')
CPVIDX=[]
for i in thickestPath:
CPVIDX.append(G.vertex_index[i])
vprop=G.vertex_properties["vp"]
eprop=G.edge_properties["ep"]
epropW=G.edge_properties["w"]
if len(self.__RTP) == 0:
tips= self.getTips(thickestPath,G)
RTP=[]
#print '***** TIPS VAR ******'
#print tips
if tips ==-1:
print 'ERROR: No tips found'
return -1
try:
tips.remove(G.vertex_index(thickestPath[0]))
except:
pass
percentOld=0
for idx,i in enumerate(tips):
percent=(float(idx)/float(len(tips)))*100
if percentOld+5< percent:
print (str(np.round(percent,1))+'% '),
percentOld=percent
try:
path,edges=gt.shortest_path(G, thickestPath[0], G.vertex(i) , weights=epropW, pred_map=None)
RTPTmp=[]
for k in path:
RTPTmp.append(G.vertex_index[k])
split=self.compareTwoOrderedLists(CPVIDX, RTPTmp)
RTP.append(RTPTmp[split:])
for j in reversed(path):
vprop[j]['nrOfPaths']+=1
for j in edges:
eprop[j]['RTP']=True
except:
print 'ERROR: in def getRootTipPaths(self,thickestPath,G): no dijkstra path at '+str(idx)+' in tips'
pass
print 'Number of Root-Tip Paths: '+str(len(RTP))
self.__RTP=RTP
print 'RTP done!'
return RTP,tips
def getTips(self,thickestPath,G,counter=None):
tips = []
tipDia= []
tipHeight=[]
rootW=[]
vprop=G.vertex_properties["vp"]
for i in G.vertices():
count=0
for _ in i.out_neighbours():
count+=1
if count == 3:
rootW.append(vprop[i]['coord'][1])
if count<=1:
if i!= thickestPath[len(thickestPath)-1]:
tips.append(G.vertex_index[i])
tipDia.append(vprop[i]['diameter'])
tipHeight.append(vprop[i]['coord'][0])
self.__medianTipDiameter=np.median(tipDia)
print 'Median Tip Diameter: '+str(self.__medianTipDiameter)
self.__meanTipDiameter=np.mean(tipDia)
print 'Mean Tip Diameter: '+str(self.__meanTipDiameter)
self.__io.saveArray(tipDia,self.__io.getHomePath()+'Plots/'+self.__io.getFileName()+'_TipDiaHisto')
self.__io.saveArray(tipDia,self.__io.getHomePath()+'Plots/'+self.__io.getFileName()+'_TipDiaHeightX')
self.__io.saveArray(tipHeight,self.__io.getHomePath()+'Plots/'+self.__io.getFileName()+'_TipDiaHeightY')
try:
percent90=np.max(tipHeight)*0.9
idx = list(np.where(tipHeight>=percent90)[0])
tmpdia90=[]
for i in idx:
tmpdia90.append(tipDia[i])
if tmpdia90:
dia90=np.max(tmpdia90)
else:
dia90 = 0
self.__90TipDiameter=dia90
if tipDia:
self.__90TipDiameter=np.max(tipDia)
else:
self.__90TipDiameter=0
if tipHeight:
self.__rootingDepth=np.max(tipHeight)
else:
self.__rootingDepth=0
if rootW:
self.__rootWidth=np.max(rootW)-np.min(rootW)
else:
self.__rootWidth=0
except:
pass
return tips
def getRTPSkeleton(self,thickestPath,G,newRTp=False):
eprop=G.edge_properties["ep"]
if newRTp==True: self.__RTP=[]
if len(self.__RTP) == 0:
startT=time.time()
RTP,tips = self.getRootTipPaths(thickestPath, G)
self.__RTP=RTP
print 'RTPs computed in ' +str(time.time()-startT)+'s'
print 'calculating RTP Skeleton'
rtpSkel=G.copy()
for e in G.edges():
if eprop[e]['RTP']==False:
rtpSkel.remove_edge(e)
return rtpSkel,len(self.__RTP),self.__medianTipDiameter,self.__meanTipDiameter,self.__90TipDiameter,self.__RTP,tips,self.__rootingDepth,self.__rootWidth