-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimport_results.R
40 lines (33 loc) · 1.62 KB
/
import_results.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
library(RSQLite)
library(BatchJobs)
library(plyr)
#usage import_results.R <results.dir> <database.file>
oargs <- commandArgs(trailingOnly=T)
results.dir <- oargs[1]
database.file <- oargs[2]
db <- dbConnect(drv=dbDriver("SQLite"),dbname=database.file)
glm.reg <- loadRegistry(results.dir)
testSamples <- dbReadTable(db,"testSamples")
rownames(testSamples) <- testSamples$Sample
for(i in 1:nrow(getJobInfo(glm.reg))){
tx <- loadResult(glm.reg,i)
tx <- tx[which(sapply(tx,function(x)!is.null(x)))]
xdf <- do.call("rbind",sapply(tx,function(x)x$pred,simplify=F))
dbWriteTable(db,"prediction",xdf,row.names=F,append=T,overwrite=F)
genes <- sapply(tx,function(x)as.character(unique(x$pred$Gene)))
kfolds <- testSamples[sapply(tx,function(x)x$pred[1,1]),"Kfold"]
acoefs <- sapply(tx,function(x)x$coefs[x$coefs!=0,,drop=F])
bcoef <- do.call("rbind",
mapply(FUN=function(coefs,kfolds,genes)
{
return(data.frame(SNP=rownames(coefs),Gene=genes,Kfolds=kfolds,Value=coefs[,1],stringsAsFactors=F))
},
coefs=acoefs,genes=genes,kfolds=kfolds,SIMPLIFY=F)
)
lambdas <- data.frame(Gene=genes,Kfold=kfolds,Value=sapply(tx,function(x)x$lambda),stringsAsFactors=F)
cvm <- data.frame(Gene=genes,Kfold=kfolds,mincvm=sapply(tx,function(x)x$min.cvm),maxcvm=sapply(tx,function(x)x$max.cvm))
dbWriteTable(db,"cvm",cvm,append=T,overwrite=F,row.names=F)
dbWriteTable(db,"coefficients",bcoef,append=T,overwrite=F,row.names=F)
dbWriteTable(db,"lambda",lambdas,append=T,row.names=F,overwrite=F)
print(i)
}