You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I can run mnist_100_full and got similar result as in the paper. But when I ran mnist_100_conv_gamma, it hangs after "INFO:main.utils:e 0, i 0:V_C_class nan, V_E 90, V_C_de 1" as following. Could you please help? Your help is greatly appreciated.
By the way, I had commented the function pool_2d() in nn.py.
-Anna
$THEANO_FLAGS='floatX=float32' python run.py train --encoder-layers convf:32:5:1:1-maxpool:2:2-convv:64:3:1:1-convf:64:3:1:1-maxpool:2:2-convv:128:3:1:1-convv:10:1:1:1-globalmeanpool:6:6-fc:10 --decoder-spec 0-0-0-0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,0,0,0,1 --labeled-samples 100 --unlabeled-samples 50000 --seed 1 -- mnist_100_conv_gamma
ERROR:main:Subprocess returned fatal: Not a git repository (or any parent up to mount point /nfs/home)
Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).
INFO:main:Logging into results/mnist_100_conv_gamma11/log.txt
INFO:main:== COMMAND LINE ==
INFO:main:run.py train --encoder-layers convf:32:5:1:1-maxpool:2:2-convv:64:3:1:1-convf:64:3:1:1-maxpool:2:2-convv:128:3:1:1-convv:10:1:1:1-globalmeanpool:6:6-fc:10 --decoder-spec 0-0-0-0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,0,0,0,1 --labeled-samples 100 --unlabeled-samples 50000 --seed 1 -- mnist_100_conv_gamma
INFO:main:== PARAMETERS ==
INFO:main: zestbn : bugfix
INFO:main: dseed : 1
INFO:main: top_c : 1
INFO:main: super_noise_std : 0.3
INFO:main: batch_size : 100
INFO:main: dataset : mnist
INFO:main: valid_set_size : 10000
INFO:main: num_epochs : 150
INFO:main: whiten_zca : 0
INFO:main: unlabeled_samples : 50000
INFO:main: decoder_spec : ('0', '0', '0', '0', '0', '0', '0', '0', '0', 'gauss')
INFO:main: valid_batch_size : 100
INFO:main: denoising_cost_x : (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)
INFO:main: f_local_noise_std : 0.3
INFO:main: cmd : train
INFO:main: act : relu
INFO:main: lrate_decay : 0.67
INFO:main: seed : 1
INFO:main: lr : 0.002
INFO:main: save_to : mnist_100_conv_gamma
INFO:main: save_dir : results/mnist_100_conv_gamma11
INFO:main: commit :
INFO:main: contrast_norm : 0
INFO:main: encoder_layers : ('convf:32:5:1:1', 'maxpool:2:2', 'convv:64:3:1:1', 'convf:64:3:1:1', 'maxpool:2:2', 'convv:128:3:1:1', 'convv:10:1:1:1', 'globalmeanpool:6:6', 'fc:10')
INFO:main: labeled_samples : 100
INFO:main:Using 10000 examples for validation
INFO:main.model:Encoder: clean, labeled
INFO:main.model: 0: noise 0
/nfs/home/yan/PycharmProjects/ladder-master_aicurious2/ladder.py:454: UserWarning: The method getOutputShape is deprecated useget_conv_output_shape instead.
stride, bm))
INFO:main.model: f1: convf, relu, BN, noise 0.00, params [32, 5, 1, 1], dim (1, 28, 28) -> (32, 32, 32)
/nfs/home/yan/PycharmProjects/ladder-master_aicurious2/nn.py:288: UserWarning: pool_2d() will have the parameter ignore_border default value changed to True (currently False). To have consistent behavior with all Theano version, explicitly add the parameter ignore_border=True. On the GPU, using ignore_border=True is needed to use cuDNN. When using ignore_border=False and not using cuDNN, the only GPU combination supported is when ds == st and padding == (0, 0) and mode == 'max'. Otherwise, the convolution will be executed on CPU.
z = pool_2d(z, ds=poolsize, st=poolstride)
INFO:main.model: f2: maxpool, linear, BN, noise 0.00, params [2, 2], dim (32, 32, 32) -> (32, 16, 16)
INFO:main.model: f3: convv, relu, BN, noise 0.00, params [64, 3, 1, 1], dim (32, 16, 16) -> (64, 14, 14)
INFO:main.model: f4: convf, relu, BN, noise 0.00, params [64, 3, 1, 1], dim (64, 14, 14) -> (64, 16, 16)
INFO:main.model: f5: maxpool, linear, BN, noise 0.00, params [2, 2], dim (64, 16, 16) -> (64, 8, 8)
INFO:main.model: f6: convv, relu, BN, noise 0.00, params [128, 3, 1, 1], dim (64, 8, 8) -> (128, 6, 6)
INFO:main.model: f7: convv, relu, BN, noise 0.00, params [10, 1, 1, 1], dim (128, 6, 6) -> (10, 6, 6)
INFO:main.model: f8: globalmeanpool, linear, BN, noise 0.00, params [6, 6], dim (10, 6, 6) -> (10, 1, 1)
INFO:main.model: f9: fc, softmax, BN, noise 0.00, params 10, dim (10, 1, 1) -> (10,)
INFO:main.model:Encoder: corr, labeled
INFO:main.model: 0: noise 0.3
INFO:main.model: f1: convf, relu, BN, noise 0.30, params [32, 5, 1, 1], dim (1, 28, 28) -> (32, 32, 32)
INFO:main.model: f2: maxpool, linear, BN, noise 0.30, params [2, 2], dim (32, 32, 32) -> (32, 16, 16)
INFO:main.model: f3: convv, relu, BN, noise 0.30, params [64, 3, 1, 1], dim (32, 16, 16) -> (64, 14, 14)
INFO:main.model: f4: convf, relu, BN, noise 0.30, params [64, 3, 1, 1], dim (64, 14, 14) -> (64, 16, 16)
INFO:main.model: f5: maxpool, linear, BN, noise 0.30, params [2, 2], dim (64, 16, 16) -> (64, 8, 8)
INFO:main.model: f6: convv, relu, BN, noise 0.30, params [128, 3, 1, 1], dim (64, 8, 8) -> (128, 6, 6)
INFO:main.model: f7: convv, relu, BN, noise 0.30, params [10, 1, 1, 1], dim (128, 6, 6) -> (10, 6, 6)
INFO:main.model: f8: globalmeanpool, linear, BN, noise 0.30, params [6, 6], dim (10, 6, 6) -> (10, 1, 1)
INFO:main.model: f9: fc, softmax, BN, noise 0.30, params 10, dim (10, 1, 1) -> (10,)
INFO:main.model:Decoder: z_corr -> z_est
INFO:main.model: g9: gauss, denois 1.00, dim None -> (10,)
INFO:main.model: g8: 0, , dim (10,) -> (10, 1, 1)
INFO:main.model: g7: 0, , dim (10, 1, 1) -> (10, 6, 6)
INFO:main.model: g6: 0, , dim (10, 6, 6) -> (128, 6, 6)
INFO:main.model: g5: 0, , dim (128, 6, 6) -> (64, 8, 8)
INFO:main.model: g4: 0, , dim (64, 8, 8) -> (64, 16, 16)
INFO:main.model: g3: 0, , dim (64, 16, 16) -> (64, 14, 14)
INFO:main.model: g2: 0, , dim (64, 14, 14) -> (32, 16, 16)
INFO:main.model: g1: 0, , dim (32, 16, 16) -> (32, 32, 32)
INFO:main.model: g0: 0, , dim (32, 32, 32) -> (1, 28, 28)
INFO:main:Found the following parameters: [f_7_b, f_6_b, f_4_b, f_3_b, f_1_b, g_9_a5, f_9_c, f_9_b, g_9_a4, g_9_a3, g_9_a2, g_9_a1, g_9_a10, g_9_a9, g_9_a8, g_9_a7, g_9_a6, f_1_W, f_3_W, f_4_W, f_6_W, f_7_W, f_9_W]
INFO:blocks.algorithms:Taking the cost gradient
INFO:blocks.algorithms:The cost gradient computation graph is built
INFO:main:Balancing 100 labels...
INFO:main.nn:Batch norm parameters: f_1_bn_mean_clean, f_1_bn_var_clean, f_2_bn_mean_clean, f_2_bn_var_clean, f_3_bn_mean_clean, f_3_bn_var_clean, f_4_bn_mean_clean, f_4_bn_var_clean, f_5_bn_mean_clean, f_5_bn_var_clean, f_6_bn_mean_clean, f_6_bn_var_clean, f_7_bn_mean_clean, f_7_bn_var_clean, f_8_bn_mean_clean, f_8_bn_var_clean, f_9_bn_mean_clean, f_9_bn_var_clean
INFO:main:Balancing 100 labels...
INFO:main.nn:Batch norm parameters: f_1_bn_mean_clean, f_1_bn_var_clean, f_2_bn_mean_clean, f_2_bn_var_clean, f_3_bn_mean_clean, f_3_bn_var_clean, f_4_bn_mean_clean, f_4_bn_var_clean, f_5_bn_mean_clean, f_5_bn_var_clean, f_6_bn_mean_clean, f_6_bn_var_clean, f_7_bn_mean_clean, f_7_bn_var_clean, f_8_bn_mean_clean, f_8_bn_var_clean, f_9_bn_mean_clean, f_9_bn_var_clean
INFO:blocks.main_loop:Entered the main loop
/nfs/home/yan/.conda/envs/ladder2/lib/python2.7/site-packages/pandas/core/generic.py:939: PerformanceWarning:
your performance may suffer as PyTables will pickle object types that it cannot
map directly to c-types [inferred_type->mixed-integer,key->block0_values] [items->[0]]
return pytables.to_hdf(path_or_buf, key, self, **kwargs)
INFO:blocks.algorithms:Initializing the training algorithm
INFO:blocks.algorithms:The training algorithm is initialized
INFO:blocks.extensions.monitoring:Monitoring on auxiliary data started
INFO:blocks.extensions.monitoring:Monitoring on auxiliary data finished
INFO:main.utils:e 0, i 0:V_C_class nan, V_E 90, V_C_de 1
The text was updated successfully, but these errors were encountered:
I can run mnist_100_full and got similar result as in the paper. But when I ran mnist_100_conv_gamma, it hangs after "INFO:main.utils:e 0, i 0:V_C_class nan, V_E 90, V_C_de 1" as following. Could you please help? Your help is greatly appreciated.
By the way, I had commented the function pool_2d() in nn.py.
-Anna
$THEANO_FLAGS='floatX=float32' python run.py train --encoder-layers convf:32:5:1:1-maxpool:2:2-convv:64:3:1:1-convf:64:3:1:1-maxpool:2:2-convv:128:3:1:1-convv:10:1:1:1-globalmeanpool:6:6-fc:10 --decoder-spec 0-0-0-0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,0,0,0,1 --labeled-samples 100 --unlabeled-samples 50000 --seed 1 -- mnist_100_conv_gamma
ERROR:main:Subprocess returned fatal: Not a git repository (or any parent up to mount point /nfs/home)
Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).
INFO:main:Logging into results/mnist_100_conv_gamma11/log.txt
INFO:main:== COMMAND LINE ==
INFO:main:run.py train --encoder-layers convf:32:5:1:1-maxpool:2:2-convv:64:3:1:1-convf:64:3:1:1-maxpool:2:2-convv:128:3:1:1-convv:10:1:1:1-globalmeanpool:6:6-fc:10 --decoder-spec 0-0-0-0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,0,0,0,1 --labeled-samples 100 --unlabeled-samples 50000 --seed 1 -- mnist_100_conv_gamma
INFO:main:== PARAMETERS ==
INFO:main: zestbn : bugfix
INFO:main: dseed : 1
INFO:main: top_c : 1
INFO:main: super_noise_std : 0.3
INFO:main: batch_size : 100
INFO:main: dataset : mnist
INFO:main: valid_set_size : 10000
INFO:main: num_epochs : 150
INFO:main: whiten_zca : 0
INFO:main: unlabeled_samples : 50000
INFO:main: decoder_spec : ('0', '0', '0', '0', '0', '0', '0', '0', '0', 'gauss')
INFO:main: valid_batch_size : 100
INFO:main: denoising_cost_x : (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)
INFO:main: f_local_noise_std : 0.3
INFO:main: cmd : train
INFO:main: act : relu
INFO:main: lrate_decay : 0.67
INFO:main: seed : 1
INFO:main: lr : 0.002
INFO:main: save_to : mnist_100_conv_gamma
INFO:main: save_dir : results/mnist_100_conv_gamma11
INFO:main: commit :
INFO:main: contrast_norm : 0
INFO:main: encoder_layers : ('convf:32:5:1:1', 'maxpool:2:2', 'convv:64:3:1:1', 'convf:64:3:1:1', 'maxpool:2:2', 'convv:128:3:1:1', 'convv:10:1:1:1', 'globalmeanpool:6:6', 'fc:10')
INFO:main: labeled_samples : 100
INFO:main:Using 10000 examples for validation
INFO:main.model:Encoder: clean, labeled
INFO:main.model: 0: noise 0
/nfs/home/yan/PycharmProjects/ladder-master_aicurious2/ladder.py:454: UserWarning: The method
getOutputShape
is deprecated useget_conv_output_shape
instead.stride, bm))
INFO:main.model: f1: convf, relu, BN, noise 0.00, params [32, 5, 1, 1], dim (1, 28, 28) -> (32, 32, 32)
/nfs/home/yan/PycharmProjects/ladder-master_aicurious2/nn.py:288: UserWarning: pool_2d() will have the parameter ignore_border default value changed to True (currently False). To have consistent behavior with all Theano version, explicitly add the parameter ignore_border=True. On the GPU, using ignore_border=True is needed to use cuDNN. When using ignore_border=False and not using cuDNN, the only GPU combination supported is when
ds == st and padding == (0, 0) and mode == 'max'
. Otherwise, the convolution will be executed on CPU.z = pool_2d(z, ds=poolsize, st=poolstride)
INFO:main.model: f2: maxpool, linear, BN, noise 0.00, params [2, 2], dim (32, 32, 32) -> (32, 16, 16)
INFO:main.model: f3: convv, relu, BN, noise 0.00, params [64, 3, 1, 1], dim (32, 16, 16) -> (64, 14, 14)
INFO:main.model: f4: convf, relu, BN, noise 0.00, params [64, 3, 1, 1], dim (64, 14, 14) -> (64, 16, 16)
INFO:main.model: f5: maxpool, linear, BN, noise 0.00, params [2, 2], dim (64, 16, 16) -> (64, 8, 8)
INFO:main.model: f6: convv, relu, BN, noise 0.00, params [128, 3, 1, 1], dim (64, 8, 8) -> (128, 6, 6)
INFO:main.model: f7: convv, relu, BN, noise 0.00, params [10, 1, 1, 1], dim (128, 6, 6) -> (10, 6, 6)
INFO:main.model: f8: globalmeanpool, linear, BN, noise 0.00, params [6, 6], dim (10, 6, 6) -> (10, 1, 1)
INFO:main.model: f9: fc, softmax, BN, noise 0.00, params 10, dim (10, 1, 1) -> (10,)
INFO:main.model:Encoder: corr, labeled
INFO:main.model: 0: noise 0.3
INFO:main.model: f1: convf, relu, BN, noise 0.30, params [32, 5, 1, 1], dim (1, 28, 28) -> (32, 32, 32)
INFO:main.model: f2: maxpool, linear, BN, noise 0.30, params [2, 2], dim (32, 32, 32) -> (32, 16, 16)
INFO:main.model: f3: convv, relu, BN, noise 0.30, params [64, 3, 1, 1], dim (32, 16, 16) -> (64, 14, 14)
INFO:main.model: f4: convf, relu, BN, noise 0.30, params [64, 3, 1, 1], dim (64, 14, 14) -> (64, 16, 16)
INFO:main.model: f5: maxpool, linear, BN, noise 0.30, params [2, 2], dim (64, 16, 16) -> (64, 8, 8)
INFO:main.model: f6: convv, relu, BN, noise 0.30, params [128, 3, 1, 1], dim (64, 8, 8) -> (128, 6, 6)
INFO:main.model: f7: convv, relu, BN, noise 0.30, params [10, 1, 1, 1], dim (128, 6, 6) -> (10, 6, 6)
INFO:main.model: f8: globalmeanpool, linear, BN, noise 0.30, params [6, 6], dim (10, 6, 6) -> (10, 1, 1)
INFO:main.model: f9: fc, softmax, BN, noise 0.30, params 10, dim (10, 1, 1) -> (10,)
INFO:main.model:Decoder: z_corr -> z_est
INFO:main.model: g9: gauss, denois 1.00, dim None -> (10,)
INFO:main.model: g8: 0, , dim (10,) -> (10, 1, 1)
INFO:main.model: g7: 0, , dim (10, 1, 1) -> (10, 6, 6)
INFO:main.model: g6: 0, , dim (10, 6, 6) -> (128, 6, 6)
INFO:main.model: g5: 0, , dim (128, 6, 6) -> (64, 8, 8)
INFO:main.model: g4: 0, , dim (64, 8, 8) -> (64, 16, 16)
INFO:main.model: g3: 0, , dim (64, 16, 16) -> (64, 14, 14)
INFO:main.model: g2: 0, , dim (64, 14, 14) -> (32, 16, 16)
INFO:main.model: g1: 0, , dim (32, 16, 16) -> (32, 32, 32)
INFO:main.model: g0: 0, , dim (32, 32, 32) -> (1, 28, 28)
INFO:main:Found the following parameters: [f_7_b, f_6_b, f_4_b, f_3_b, f_1_b, g_9_a5, f_9_c, f_9_b, g_9_a4, g_9_a3, g_9_a2, g_9_a1, g_9_a10, g_9_a9, g_9_a8, g_9_a7, g_9_a6, f_1_W, f_3_W, f_4_W, f_6_W, f_7_W, f_9_W]
INFO:blocks.algorithms:Taking the cost gradient
INFO:blocks.algorithms:The cost gradient computation graph is built
INFO:main:Balancing 100 labels...
INFO:main.nn:Batch norm parameters: f_1_bn_mean_clean, f_1_bn_var_clean, f_2_bn_mean_clean, f_2_bn_var_clean, f_3_bn_mean_clean, f_3_bn_var_clean, f_4_bn_mean_clean, f_4_bn_var_clean, f_5_bn_mean_clean, f_5_bn_var_clean, f_6_bn_mean_clean, f_6_bn_var_clean, f_7_bn_mean_clean, f_7_bn_var_clean, f_8_bn_mean_clean, f_8_bn_var_clean, f_9_bn_mean_clean, f_9_bn_var_clean
INFO:main:Balancing 100 labels...
INFO:main.nn:Batch norm parameters: f_1_bn_mean_clean, f_1_bn_var_clean, f_2_bn_mean_clean, f_2_bn_var_clean, f_3_bn_mean_clean, f_3_bn_var_clean, f_4_bn_mean_clean, f_4_bn_var_clean, f_5_bn_mean_clean, f_5_bn_var_clean, f_6_bn_mean_clean, f_6_bn_var_clean, f_7_bn_mean_clean, f_7_bn_var_clean, f_8_bn_mean_clean, f_8_bn_var_clean, f_9_bn_mean_clean, f_9_bn_var_clean
INFO:blocks.main_loop:Entered the main loop
/nfs/home/yan/.conda/envs/ladder2/lib/python2.7/site-packages/pandas/core/generic.py:939: PerformanceWarning:
your performance may suffer as PyTables will pickle object types that it cannot
map directly to c-types [inferred_type->mixed-integer,key->block0_values] [items->[0]]
return pytables.to_hdf(path_or_buf, key, self, **kwargs)
INFO:blocks.algorithms:Initializing the training algorithm
INFO:blocks.algorithms:The training algorithm is initialized
INFO:blocks.extensions.monitoring:Monitoring on auxiliary data started
INFO:blocks.extensions.monitoring:Monitoring on auxiliary data finished
INFO:main.utils:e 0, i 0:V_C_class nan, V_E 90, V_C_de 1
The text was updated successfully, but these errors were encountered: