Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Can't run mnist_100_conv_gamma #23

Open
anna1969 opened this issue Feb 11, 2017 · 0 comments
Open

Can't run mnist_100_conv_gamma #23

anna1969 opened this issue Feb 11, 2017 · 0 comments

Comments

@anna1969
Copy link

I can run mnist_100_full and got similar result as in the paper. But when I ran mnist_100_conv_gamma, it hangs after "INFO:main.utils:e 0, i 0:V_C_class nan, V_E 90, V_C_de 1" as following. Could you please help? Your help is greatly appreciated.
By the way, I had commented the function pool_2d() in nn.py.
-Anna

$THEANO_FLAGS='floatX=float32' python run.py train --encoder-layers convf:32:5:1:1-maxpool:2:2-convv:64:3:1:1-convf:64:3:1:1-maxpool:2:2-convv:128:3:1:1-convv:10:1:1:1-globalmeanpool:6:6-fc:10 --decoder-spec 0-0-0-0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,0,0,0,1 --labeled-samples 100 --unlabeled-samples 50000 --seed 1 -- mnist_100_conv_gamma
ERROR:main:Subprocess returned fatal: Not a git repository (or any parent up to mount point /nfs/home)
Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).
INFO:main:Logging into results/mnist_100_conv_gamma11/log.txt
INFO:main:== COMMAND LINE ==
INFO:main:run.py train --encoder-layers convf:32:5:1:1-maxpool:2:2-convv:64:3:1:1-convf:64:3:1:1-maxpool:2:2-convv:128:3:1:1-convv:10:1:1:1-globalmeanpool:6:6-fc:10 --decoder-spec 0-0-0-0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,0,0,0,1 --labeled-samples 100 --unlabeled-samples 50000 --seed 1 -- mnist_100_conv_gamma
INFO:main:== PARAMETERS ==
INFO:main: zestbn : bugfix
INFO:main: dseed : 1
INFO:main: top_c : 1
INFO:main: super_noise_std : 0.3
INFO:main: batch_size : 100
INFO:main: dataset : mnist
INFO:main: valid_set_size : 10000
INFO:main: num_epochs : 150
INFO:main: whiten_zca : 0
INFO:main: unlabeled_samples : 50000
INFO:main: decoder_spec : ('0', '0', '0', '0', '0', '0', '0', '0', '0', 'gauss')
INFO:main: valid_batch_size : 100
INFO:main: denoising_cost_x : (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)
INFO:main: f_local_noise_std : 0.3
INFO:main: cmd : train
INFO:main: act : relu
INFO:main: lrate_decay : 0.67
INFO:main: seed : 1
INFO:main: lr : 0.002
INFO:main: save_to : mnist_100_conv_gamma
INFO:main: save_dir : results/mnist_100_conv_gamma11
INFO:main: commit :
INFO:main: contrast_norm : 0
INFO:main: encoder_layers : ('convf:32:5:1:1', 'maxpool:2:2', 'convv:64:3:1:1', 'convf:64:3:1:1', 'maxpool:2:2', 'convv:128:3:1:1', 'convv:10:1:1:1', 'globalmeanpool:6:6', 'fc:10')
INFO:main: labeled_samples : 100
INFO:main:Using 10000 examples for validation
INFO:main.model:Encoder: clean, labeled
INFO:main.model: 0: noise 0
/nfs/home/yan/PycharmProjects/ladder-master_aicurious2/ladder.py:454: UserWarning: The method getOutputShape is deprecated useget_conv_output_shape instead.
stride, bm))
INFO:main.model: f1: convf, relu, BN, noise 0.00, params [32, 5, 1, 1], dim (1, 28, 28) -> (32, 32, 32)
/nfs/home/yan/PycharmProjects/ladder-master_aicurious2/nn.py:288: UserWarning: pool_2d() will have the parameter ignore_border default value changed to True (currently False). To have consistent behavior with all Theano version, explicitly add the parameter ignore_border=True. On the GPU, using ignore_border=True is needed to use cuDNN. When using ignore_border=False and not using cuDNN, the only GPU combination supported is when ds == st and padding == (0, 0) and mode == 'max'. Otherwise, the convolution will be executed on CPU.
z = pool_2d(z, ds=poolsize, st=poolstride)
INFO:main.model: f2: maxpool, linear, BN, noise 0.00, params [2, 2], dim (32, 32, 32) -> (32, 16, 16)
INFO:main.model: f3: convv, relu, BN, noise 0.00, params [64, 3, 1, 1], dim (32, 16, 16) -> (64, 14, 14)
INFO:main.model: f4: convf, relu, BN, noise 0.00, params [64, 3, 1, 1], dim (64, 14, 14) -> (64, 16, 16)
INFO:main.model: f5: maxpool, linear, BN, noise 0.00, params [2, 2], dim (64, 16, 16) -> (64, 8, 8)
INFO:main.model: f6: convv, relu, BN, noise 0.00, params [128, 3, 1, 1], dim (64, 8, 8) -> (128, 6, 6)
INFO:main.model: f7: convv, relu, BN, noise 0.00, params [10, 1, 1, 1], dim (128, 6, 6) -> (10, 6, 6)
INFO:main.model: f8: globalmeanpool, linear, BN, noise 0.00, params [6, 6], dim (10, 6, 6) -> (10, 1, 1)
INFO:main.model: f9: fc, softmax, BN, noise 0.00, params 10, dim (10, 1, 1) -> (10,)
INFO:main.model:Encoder: corr, labeled
INFO:main.model: 0: noise 0.3
INFO:main.model: f1: convf, relu, BN, noise 0.30, params [32, 5, 1, 1], dim (1, 28, 28) -> (32, 32, 32)
INFO:main.model: f2: maxpool, linear, BN, noise 0.30, params [2, 2], dim (32, 32, 32) -> (32, 16, 16)
INFO:main.model: f3: convv, relu, BN, noise 0.30, params [64, 3, 1, 1], dim (32, 16, 16) -> (64, 14, 14)
INFO:main.model: f4: convf, relu, BN, noise 0.30, params [64, 3, 1, 1], dim (64, 14, 14) -> (64, 16, 16)
INFO:main.model: f5: maxpool, linear, BN, noise 0.30, params [2, 2], dim (64, 16, 16) -> (64, 8, 8)
INFO:main.model: f6: convv, relu, BN, noise 0.30, params [128, 3, 1, 1], dim (64, 8, 8) -> (128, 6, 6)
INFO:main.model: f7: convv, relu, BN, noise 0.30, params [10, 1, 1, 1], dim (128, 6, 6) -> (10, 6, 6)
INFO:main.model: f8: globalmeanpool, linear, BN, noise 0.30, params [6, 6], dim (10, 6, 6) -> (10, 1, 1)
INFO:main.model: f9: fc, softmax, BN, noise 0.30, params 10, dim (10, 1, 1) -> (10,)
INFO:main.model:Decoder: z_corr -> z_est
INFO:main.model: g9: gauss, denois 1.00, dim None -> (10,)
INFO:main.model: g8: 0, , dim (10,) -> (10, 1, 1)
INFO:main.model: g7: 0, , dim (10, 1, 1) -> (10, 6, 6)
INFO:main.model: g6: 0, , dim (10, 6, 6) -> (128, 6, 6)
INFO:main.model: g5: 0, , dim (128, 6, 6) -> (64, 8, 8)
INFO:main.model: g4: 0, , dim (64, 8, 8) -> (64, 16, 16)
INFO:main.model: g3: 0, , dim (64, 16, 16) -> (64, 14, 14)
INFO:main.model: g2: 0, , dim (64, 14, 14) -> (32, 16, 16)
INFO:main.model: g1: 0, , dim (32, 16, 16) -> (32, 32, 32)
INFO:main.model: g0: 0, , dim (32, 32, 32) -> (1, 28, 28)
INFO:main:Found the following parameters: [f_7_b, f_6_b, f_4_b, f_3_b, f_1_b, g_9_a5, f_9_c, f_9_b, g_9_a4, g_9_a3, g_9_a2, g_9_a1, g_9_a10, g_9_a9, g_9_a8, g_9_a7, g_9_a6, f_1_W, f_3_W, f_4_W, f_6_W, f_7_W, f_9_W]
INFO:blocks.algorithms:Taking the cost gradient
INFO:blocks.algorithms:The cost gradient computation graph is built
INFO:main:Balancing 100 labels...
INFO:main.nn:Batch norm parameters: f_1_bn_mean_clean, f_1_bn_var_clean, f_2_bn_mean_clean, f_2_bn_var_clean, f_3_bn_mean_clean, f_3_bn_var_clean, f_4_bn_mean_clean, f_4_bn_var_clean, f_5_bn_mean_clean, f_5_bn_var_clean, f_6_bn_mean_clean, f_6_bn_var_clean, f_7_bn_mean_clean, f_7_bn_var_clean, f_8_bn_mean_clean, f_8_bn_var_clean, f_9_bn_mean_clean, f_9_bn_var_clean
INFO:main:Balancing 100 labels...
INFO:main.nn:Batch norm parameters: f_1_bn_mean_clean, f_1_bn_var_clean, f_2_bn_mean_clean, f_2_bn_var_clean, f_3_bn_mean_clean, f_3_bn_var_clean, f_4_bn_mean_clean, f_4_bn_var_clean, f_5_bn_mean_clean, f_5_bn_var_clean, f_6_bn_mean_clean, f_6_bn_var_clean, f_7_bn_mean_clean, f_7_bn_var_clean, f_8_bn_mean_clean, f_8_bn_var_clean, f_9_bn_mean_clean, f_9_bn_var_clean
INFO:blocks.main_loop:Entered the main loop
/nfs/home/yan/.conda/envs/ladder2/lib/python2.7/site-packages/pandas/core/generic.py:939: PerformanceWarning:
your performance may suffer as PyTables will pickle object types that it cannot
map directly to c-types [inferred_type->mixed-integer,key->block0_values] [items->[0]]

return pytables.to_hdf(path_or_buf, key, self, **kwargs)
INFO:blocks.algorithms:Initializing the training algorithm
INFO:blocks.algorithms:The training algorithm is initialized
INFO:blocks.extensions.monitoring:Monitoring on auxiliary data started
INFO:blocks.extensions.monitoring:Monitoring on auxiliary data finished
INFO:main.utils:e 0, i 0:V_C_class nan, V_E 90, V_C_de 1

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant