-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdl_first_test.py
159 lines (124 loc) · 4.79 KB
/
dl_first_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import time
import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
from dl_basic_function import *
#from testCases_v2 import *
#from dnn_app_utils_v2 import *
plt.rcParams['figure.figsize'] = (5.0,4.0) #设置 plots 的默认大小
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
np.random.seed(1)
# 1、数据集
train_x_orig, train_y, test_x_orig, test_y, classes = load_data()
num_px = train_x_orig.shape[1]
print(train_x_orig.shape, test_x_orig.shape)
'''
# 显示其中一张图片
index = 10
plt.imshow(train_x_orig[index])
plt.show()
print ("y = " + str(train_y[0,index]) +\
". It's a " + classes[train_y[0,index]].decode("utf-8") + " picture.")
'''
# 重铺数据,并标准化
train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0], -1).T
test_x_flatten = test_x_orig.reshape(test_x_orig.shape[0], -1).T
train_x = train_x_flatten/255.
test_x = test_x_flatten/255.
print(train_x.shape, test_x.shape)
# 2、两层神经网络
# 输出 w1 w2 b1 b2
def two_layer_model(X, Y, layers_dims, learning_rate=0.0075, num_iterations=3000, print_cost=False):
np.random.seed(1)
m = X.shape[1]
(n_x, n_h, n_y) = layers_dims
grads = {}
costs = []
parameters = initialize_parameters(n_x, n_h, n_y)
W1 = parameters["W1"]
W2 = parameters["W2"]
b1 = parameters["b1"]
b2 = parameters["b2"]
for i in range(0, num_iterations):
A1, cache1 = linear_activation_forward(X, W1, b1, activation="relu")
A2, cache2 = linear_activation_forward(A1, W2, b2, activation="sigmoid")
cost = compute_cost(A2, Y)
# 初始化反向传播
dA2 = - (np.divide(Y, A2) - np.divide(1-Y, 1-A2))
#dA2 = np.power(Y-A2,2) #代价函数升高
dA1, dW2, db2 = linear_activation_backward(dA2, cache2, activation="sigmoid")
dA0, dW1, db1 = linear_activation_backward(dA1, cache1, activation="relu")
grads["dW1"] = dW1
grads["dW2"] = dW2
grads["db1"] = db1
grads["db2"] = db2
parameters = update_parameters(parameters, grads, learning_rate)
W1 = parameters["W1"]
W2 = parameters["W2"]
b1 = parameters["b1"]
b2 = parameters["b2"]
if print_cost and i%100==0:
costs.append(cost)
print("cost after iteration {}:{}".format(i, np.squeeze(cost)))
plt.plot(np.squeeze(costs))
plt.xlabel('iterations (per 100)')
plt.ylabel('cost')
plt.title("learning rate = " + str(learning_rate))
plt.show()
return parameters
# 3、L层神经网络
def L_layer_model(X, Y, layers_dims, learning_rate=0.0075, num_iterations=3000, print_cost=False):
np.random.seed(1)
costs = []
parameters = initialize_parameters_deep(layers_dims)
for i in range(0, num_iterations):
AL, caches = L_model_forward(X, parameters)
cost = compute_cost(AL, Y)
grads = L_model_backward(AL, Y, caches)
parameters = update_parameters(parameters, grads, learning_rate)
if print_cost and i%100==0:
costs.append(cost)
print("cost after iteration %i: %f" % (i,cost))
plt.plot(np.squeeze(costs))
plt.xlabel('iterations (per 100)')
plt.ylabel('cost')
plt.title("learning rate = " + str(learning_rate))
plt.show()
return parameters
# 4、运行两层模型
'''
n_x = train_x.shape[0]
n_h = 7
n_y = 1
layers_dims = [n_x, n_h, n_y]
parameters = two_layer_model(train_x, train_y, layers_dims,
learning_rate=0.01, num_iterations=2500, print_cost=True)
predictions_train = predict(train_x, train_y, parameters)
predictions_test = predict(test_x, test_y, parameters)
'''
# 5、运行L层模型
layers_dims = [train_x.shape[0], 20, 7, 5, 1]
print(layers_dims)
parameters = L_layer_model(train_x, train_y, layers_dims,
learning_rate=0.01, num_iterations = 1000, print_cost = True)
predictions_train = predict(train_x, train_y, parameters)
predictions_test = predict(test_x, test_y, parameters)
'''
# 6、显示一些标记不正确的图像
print_mislabeled_images(classes, test_x, test_y, predictions_test)
# 7、用自己的图像测试
my_image = "my_image.jpg" # change this to the name of your image file
my_label_y = [1] # the true class of your image (1 -> cat, 0 -> non-cat)
fname = "images/" + my_image
image = np.array(ndimage.imread(fname, flatten=False))
my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((num_px*num_px*3,1))
my_predicted_image = predict(my_image, my_label_y, parameters)
plt.imshow(image)
plt.show()
print ("y = " + str(np.squeeze(my_predicted_image)) +", your L-layer model predicts a \"" \
+ classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") + "\" picture.")
'''