-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.cpp
287 lines (253 loc) · 9.88 KB
/
test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
//
// Created by mulong on 2024/4/22.
//
// this test is provided by OAK China.
#include <chrono>
#include <depthai/build/version.hpp>
#include <depthai/depthai.hpp>
#include <deque>
#include <iostream>
#include <map>
#include <opencv2/opencv.hpp>
// 定义帧率常量
/*
* mono 400p : max 50fps
* mono 720p/800p : max 40fps
* color 720p/800p : max 30fps
*/
constexpr int FPS = 30;
// 是否为彩色相机
constexpr bool color = true;
// 相机分辨率
const std::string resolution = "400";
// 定义相机列表
std::vector<std::string> cam_list{
"CAM_A",
"CAM_B",
"CAM_C",
"CAM_D",
};
// 黑白相机分辨率选项
std::map<std::string, dai::MonoCameraProperties::SensorResolution>
mono_res_opts = {
{"400", dai::MonoCameraProperties::SensorResolution::THE_400_P},
{"480", dai::MonoCameraProperties::SensorResolution::THE_480_P},
{"720", dai::MonoCameraProperties::SensorResolution::THE_720_P},
{"800", dai::MonoCameraProperties::SensorResolution::THE_800_P},
{"1200", dai::MonoCameraProperties::SensorResolution::THE_1200_P},
};
// 彩色相机分辨率选项
std::map<std::string, dai::ColorCameraProperties::SensorResolution>
color_res_opts = {
{"720", dai::ColorCameraProperties::SensorResolution::THE_720_P},
{"800", dai::ColorCameraProperties::SensorResolution::THE_800_P},
{"1080", dai::ColorCameraProperties::SensorResolution::THE_1080_P},
{"1200", dai::ColorCameraProperties::SensorResolution::THE_1200_P},
{"4k", dai::ColorCameraProperties::SensorResolution::THE_4_K},
{"5mp", dai::ColorCameraProperties::SensorResolution::THE_5_MP},
{"12mp", dai::ColorCameraProperties::SensorResolution::THE_12_MP},
{"48mp", dai::ColorCameraProperties::SensorResolution::THE_48_MP},
};
// 将相机板插槽名称映射到相机名称的字典
std::map<std::string, std::string> cam_socket_to_name = {
{"RGB", "CAM_A"}, {"LEFT", "CAM_B"}, {"RIGHT", "CAM_C"},
{"CAM_A", "CAM_A"}, {"CAM_B", "CAM_B"}, {"CAM_C", "CAM_C"},
{"CAM_D", "CAM_D"}, {"CAM_E", "CAM_E"}, {"CAM_F", "CAM_F"},
};
// 相机板插槽选项
std::map<std::string, dai::CameraBoardSocket> cam_socket_opts = {
{"CAM_A", dai::CameraBoardSocket::CAM_A},
{"CAM_B", dai::CameraBoardSocket::CAM_B},
{"CAM_C", dai::CameraBoardSocket::CAM_C},
{"CAM_D", dai::CameraBoardSocket::CAM_D},
{"CAM_E", dai::CameraBoardSocket::CAM_E},
{"CAM_F", dai::CameraBoardSocket::CAM_F},
};
/**
* 帧率处理类,用于记录和计算不同事件的帧率。
*/
class FPSHandler {
private:
// 开始记录时间的时间点
std::chrono::steady_clock::time_point start;
// 以事件名称为键,存储时间戳的双端队列
std::map<std::string, std::deque<double>> ticks;
// 最大时间戳数量,用于控制双端队列的长度
int maxTicks{100};
public:
/**
* 构造函数,初始化开始记录时间的时间点。
*/
FPSHandler() : start(std::chrono::steady_clock::now()) {}
/**
* 记录指定事件的当前时间戳。
* @param name 事件的名称。
*/
void tick(const std::string& name) {
// 如果该事件时间戳队列不存在,则创建新队列
if (ticks.find(name) == ticks.end()) {
ticks[name] = std::deque<double>();
}
// 记录当前时间戳(单位:秒)
ticks[name].push_back(
static_cast<double>(
std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now() - start)
.count()) /
1000.0);
while (ticks[name].size() > maxTicks) {
ticks[name].pop_front();
}
}
/**
* 计算并返回指定事件的帧率。
* @param name 事件的名称。
* @return 指定事件的帧率,如果无法计算,则返回 0.0。
*/
double tick_fps(const std::string& name) {
// 确保事件存在且时间戳数量大于 1
if (ticks.find(name) != ticks.end() && ticks[name].size() > 1) {
// 计算时间差
auto const time_diff =
ticks[name].back() - ticks[name].front(); // 计算时间差
return static_cast<double>(ticks[name].size() - 1) /
time_diff; // 计算帧率
}
return 0.0;
}
/**
* 打印所有事件的帧率状态。
*/
void print_status() {
std::cout << "=== TOTAL FPS ===" << '\n';
for (const auto& pair : ticks) {
std::cout << "[" << pair.first << "]: " << tick_fps(pair.first) << '\n';
}
}
/**
* 在给定的 OpenCV 帧上绘制指定事件的帧率。
* @param frame 要绘制帧率的 OpenCV 帧。
* @param name 事件的名称。
*/
void draw_fps(cv::Mat& frame, const std::string& name) {
// 计算并格式化帧率字符串
// std::string fps_str = name + " FPS: " + std::to_string(tick_fps(name));
std::string fps_str =
cv::format("%s FPS: %.3f", name.c_str(), tick_fps(name));
fps_str.erase(fps_str.find_last_not_of('0') + 1, std::string::npos);
fps_str.erase(fps_str.find_last_not_of('.') + 1, std::string::npos);
// 在帧上绘制帧率
cv::putText(frame, fps_str, cv::Point(10, 30), cv::FONT_HERSHEY_SIMPLEX, 1,
cv::Scalar(128, 128, 128), 4, cv::LINE_AA);
cv::putText(frame, fps_str, cv::Point(10, 30), cv::FONT_HERSHEY_SIMPLEX, 1,
cv::Scalar(255, 255, 255), 1, cv::LINE_AA);
if (name != "nn") {
auto const nn_fps = tick_fps("nn");
if (nn_fps > 0) {
std::string nn_fps_str = "NN FPS: " + std::to_string(nn_fps);
nn_fps_str.erase(nn_fps_str.find_last_not_of('0') + 1,
std::string::npos);
nn_fps_str.erase(nn_fps_str.find_last_not_of('.') + 1,
std::string::npos);
cv::putText(frame, nn_fps_str, cv::Point(10, 45),
cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(128, 128, 128), 4,
cv::LINE_AA);
cv::putText(frame, nn_fps_str, cv::Point(10, 45),
cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(255, 255, 255), 1,
cv::LINE_AA);
}
}
}
};
// 格式化持续时间
std::string formatDuration(const std::chrono::steady_clock::duration duration) {
// 首先,将 duration 转换为纳秒
auto ns = std::chrono::duration_cast<std::chrono::nanoseconds>(duration);
// 计算小时、分钟、秒和毫秒
auto const hrs = std::chrono::duration_cast<std::chrono::hours>(ns);
ns -= hrs;
auto const mins = std::chrono::duration_cast<std::chrono::minutes>(ns);
ns -= mins;
auto const secs = std::chrono::duration_cast<std::chrono::seconds>(ns);
ns -= secs;
auto const millis = std::chrono::duration_cast<std::chrono::milliseconds>(ns);
ns -= millis;
auto const micros = std::chrono::duration_cast<std::chrono::microseconds>(ns);
ns -= micros;
// 构建格式化的字符串
std::ostringstream oss;
oss << std::setw(2) << std::setfill('0') << hrs.count() << ":" // 时
<< std::setw(2) << std::setfill('0') << mins.count() << ":" // 分
<< std::setw(2) << std::setfill('0') << secs.count() << "." // 秒
<< std::setw(3) << std::setfill('0') << millis.count() // 毫秒
<< std::setw(3) << std::setfill('0') << micros.count();
return oss.str();
}
int main() {
dai::Device device;
std::cout << "Depthai Core: " << dai::build::VERSION << '\n';
std::cout << "Usb speed: " << device.getUsbSpeed() << '\n';
// 创建深度 AI 管道
dai::Pipeline pipeline;
pipeline.setXLinkChunkSize(0);
// 创建用于存储相机输出的 XLinkOut 节点的字典
std::map<std::string, std::shared_ptr<dai::node::ColorCamera>> camColor;
std::map<std::string, std::shared_ptr<dai::node::MonoCamera>> camMono;
auto sync = pipeline.create<dai::node::Sync>();
// sync->setSyncThreshold(std::chrono::seconds(1));
auto xOut = pipeline.create<dai::node::XLinkOut>();
xOut->setStreamName("msgOut");
sync->out.link(xOut->input);
// 遍历相机列表并配置管道
for (const auto& cam_name : cam_list) {
if (color) {
camColor[cam_name] = pipeline.create<dai::node::ColorCamera>();
camColor[cam_name]->setResolution(color_res_opts[resolution]);
camColor[cam_name]->setBoardSocket(cam_socket_opts[cam_name]);
camColor[cam_name]->setFps(FPS);
camColor[cam_name]->isp.link(sync->inputs[cam_name]);
camColor[cam_name]->initialControl.setFrameSyncMode(
cam_name == "CAM_A" ? dai::CameraControl::FrameSyncMode::OUTPUT
: dai::CameraControl::FrameSyncMode::INPUT);
} else {
camMono[cam_name] = pipeline.create<dai::node::MonoCamera>();
camMono[cam_name]->setResolution(mono_res_opts[resolution]);
camMono[cam_name]->setBoardSocket(cam_socket_opts[cam_name]);
camMono[cam_name]->setFps(FPS);
camMono[cam_name]->out.link(sync->inputs[cam_name]);
camMono[cam_name]->initialControl.setFrameSyncMode(
cam_name == "CAM_A" ? dai::CameraControl::FrameSyncMode::OUTPUT
: dai::CameraControl::FrameSyncMode::INPUT);
}
}
// 启动管道
device.startPipeline(pipeline);
auto const msgGrp = device.getOutputQueue("msgOut", 4, false);
FPSHandler fps_handler;
while (true) {
std::cout << "--------------------" << '\n';
auto msgData = msgGrp->get<dai::MessageGroup>();
if (msgData == nullptr) {
continue;
}
for (const auto& cam_name : cam_list) {
// 从设备获取相机输出数据包
auto packet = msgData->get<dai::ImgFrame>(cam_name);
if (packet) {
fps_handler.tick(cam_name);
std::cout << "Received frame " << cam_name << ": "
<< formatDuration(
packet->getTimestampDevice().time_since_epoch())
<< '\n';
auto frame = packet->getCvFrame();
fps_handler.draw_fps(frame, cam_name);
cv::imshow(cam_name, frame);
}
}
if (cv::waitKey(1) == 'q') {
break;
}
}
cv::destroyAllWindows();
return 0;
}