forked from tomguluson92/StyleGAN_PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopts.py
71 lines (57 loc) · 2.45 KB
/
opts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# coding: UTF-8
"""
@author: samuel ko
"""
import argparse
import torch
import os
def INFO(inputs):
print("[ Style GAN ] %s" % (inputs))
def presentParameters(args_dict):
"""
Print the parameters setting line by line
Arg: args_dict - The dict object which is transferred from argparse Namespace object
"""
INFO("========== Parameters ==========")
for key in sorted(args_dict.keys()):
INFO("{:>15} : {}".format(key, args_dict[key]))
INFO("===============================")
class TrainOptions():
def __init__(self):
parser = argparse.ArgumentParser()
parser.add_argument('--path', type=str, default='./dogs/')
parser.add_argument('--epoch', type=int, default=500)
parser.add_argument('--batch_size', type=int, default=2)
parser.add_argument('--type', type=str, default='style')
parser.add_argument('--resume', type=str, default='model.pth')
parser.add_argument('--det', type=str, default='train_result_v0.1')
self.opts = parser.parse_args()
def parse(self):
self.opts.device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Check if the parameter is valid
if self.opts.type not in ['style', 'origin']:
raise Exception(
"Unknown type: {} You should assign one of them ['style', 'origin']...".format(self.opts.type))
# Create the destination folder
if not os.path.exists(self.opts.det):
os.mkdir(self.opts.det)
if not os.path.exists(os.path.join(self.opts.det, 'images')):
os.mkdir(os.path.join(self.opts.det, 'images'))
if not os.path.exists(os.path.join(self.opts.det, 'models')):
os.mkdir(os.path.join(self.opts.det, 'models'))
# Print the options
presentParameters(vars(self.opts))
return self.opts
class InferenceOptions():
def __init__(self):
parser = argparse.ArgumentParser()
parser.add_argument('--resume', type=str, default='train_result_v0.1/model/latest.pth')
parser.add_argument('--type', type=str, default='style')
parser.add_argument('--num_face', type=int, default=32)
parser.add_argument('--det', type=str, default='result.png')
self.opts = parser.parse_args()
def parse(self):
self.opts.device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Print the options
presentParameters(vars(self.opts))
return self.opts