forked from jasonacox/TinyLLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloadtest.py
114 lines (100 loc) · 3.19 KB
/
loadtest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# LLM Load Generator and Performance Report
#
# Author: Jason A. Cox
# Date: 27 Apr 2024
import time
import threading
from openai import OpenAI
# Default Settings
model="mistralai/Mistral-Nemo-Instruct-2407"
base_url="http://localhost:8000/v1"
token="token-abc123"
max_sessions=1024
# Ask user for settings
print("LLM Load Generator and Performance Report")
print()
base_url = input(f"Enter vLLM URL [{base_url}]: ") or base_url
token = input(f"Enter API Key [{token}]: ") or token
# Attempt to poll the server to get the model list
llm = OpenAI(api_key=token, base_url=base_url)
try:
models = llm.models.list()
except Exception as err:
print("Warning: Unable to connect to server to get model list.")
print(f"Error: {err}")
print()
else:
# build list of models
if len(models.data) > 0:
model_list = [model.id for model in models.data]
if not model in model_list:
model = model_list[0]
# print models
print()
print("Available Models:")
for m in models.data:
print(f" - {m.id}")
print()
model = input(f"Enter Model [{model}]: ") or model
max_sessions = int(input(f"Enter Max Sessions [{max_sessions}]: ") or max_sessions)
print()
# Globals
stats = {}
client = OpenAI(
base_url=base_url,
api_key=token,
)
def func(name):
start_time = time.time()
response = client.chat.completions.create(
model=model,
messages=[
{"role": "user", "content": "Hello!"}
],
max_tokens=64,
)
end_time = time.time()
response_time = end_time - start_time
stats[name] = {}
stats[name]["response_time"] = response_time
stats[name]["tokens"] = int(response.usage.completion_tokens)
print(f" - [{name}] Received response in {end_time - start_time}s")
print(response.choices[0])
def main(num_threads=256):
for i in range(num_threads):
threading.Thread(target=func, args=(f"Thread-{i}",)).start()
# Wait for threads to finish
for thread in threading.enumerate():
if thread != threading.current_thread():
thread.join()
report = {}
if __name__ == "__main__":
print("Starting load test ramp...")
print(f"Host: {base_url}")
print(f"Model: {model}")
i = 1
while i <= max_sessions:
print(f"Running {i} threads...")
main_start = time.time()
main(i)
main_end = time.time()
# Compute Stats
total_response_time = sum(stats[name]['response_time'] for name in stats)
total_tokens = sum(stats[name]['tokens'] for name in stats)
average_response_time = total_response_time / len(stats)
tokens_per_second = total_tokens / (main_end - main_start)
tokens_per_thread = total_tokens / len(stats)
report[i] = f"Total TPS: {tokens_per_second:.2f} - Average Thread TPS: {tokens_per_thread / average_response_time:.2f}"
print("")
if i == max_sessions:
break
if i * 2 > max_sessions:
i = max_sessions
else:
i *= 2
print("Load test complete.")
print()
print("Results:")
for threads, result in report.items():
print(f"Threads: {threads} - {result}")
print("Done.")