-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
244 lines (197 loc) · 8.48 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os
os.environ["WANDB_DIR"] = "/home/stephandooper"
os.environ["VIPS_CONCURRENCY"] = "30"
os.environ["OMP_NUM_THREADS"] = "4"
import pyvips
pyvips.cache_set_max(20)
pyvips.cache_set_max_mem(1024 * 1024)
import torch
import warnings
from pathlib import Path
import lightning.pytorch as pl
from lightning.pytorch.callbacks import ModelCheckpoint
from lightning.pytorch.loggers import WandbLogger
from streamingclam.options import TrainConfig
from streamingclam.utils.memory_format import MemoryFormat
from streamingclam.utils.printing import PrintingCallback
from streamingclam.utils.finetune import FeatureExtractorFreezeUnfreeze
from streamingclam.data.splits import StreamingCLAMDataModule
from streamingclam.data.dataset import augmentations
from streamingclam.models.sclam import StreamingCLAM
from streamingclam.utils.writers import AttentionWriter, TestPredictionWriter
torch.set_float32_matmul_precision("medium")
def configure_callbacks(options):
callbacks = []
if options.mode == "fit":
checkpoint_callback = ModelCheckpoint(
dirpath=options.default_save_dir + f"/{options.experiment_name}/fold_{options.fold}/ckp",
monitor="val_loss",
filename="streamingclam-{epoch:02d}-{val_loss:.2f}-{val_acc:.2f}",
save_top_k=3,
save_last=True,
mode="min",
verbose=True,
)
finetune_cb = FeatureExtractorFreezeUnfreeze(
options.unfreeze_streaming_layers_at_epoch,
tile_size_finetune=options.tile_size_finetune,
lambda_func=lambda epoch: 5,
)
memory_format_cb = MemoryFormat()
print_cb = PrintingCallback(options)
callbacks = [checkpoint_callback, finetune_cb, memory_format_cb, print_cb]
elif options.mode=="attention":
writer_cb = AttentionWriter(Path(options.default_save_dir) / Path(f"{options.experiment_name}/attentions"),
read_level=options.read_level,
write_level=options.write_level,
write_interval="batch" if options.mode=="attention" else "epoch")
callbacks = [writer_cb]
elif options.mode=="test":
test_writer = TestPredictionWriter(Path(options.default_save_dir + f"/{options.experiment_name}/fold_{str(options.fold)}"))
callbacks = [test_writer]
return callbacks
def configure_checkpoints():
try:
# Check for last checkpoint
last_checkpoint = list(Path(options.default_save_dir + f"/{options.experiment_name}/fold_{str(options.fold)}").glob("*last.ckpt"))
last_checkpoint_path = str(last_checkpoint[0])
except IndexError:
if options.resume:
warnings.warn("Resume option enabled, but no checkpoint files found. Training will start from scratch.")
last_checkpoint_path = None
return last_checkpoint_path
def configure_trainer(options, wandb_logger=None):
callbacks = configure_callbacks(options)
trainer = pl.Trainer(
default_root_dir=options.default_save_dir,
accelerator="gpu",
max_epochs=options.num_epochs,
devices=options.num_gpus,
accumulate_grad_batches=options.grad_batches,
precision=options.precision,
callbacks=callbacks,
strategy=options.strategy,
benchmark=False,
reload_dataloaders_every_n_epochs=options.unfreeze_streaming_layers_at_epoch,
logger=wandb_logger if wandb_logger else None,
)
return trainer
def get_model_statistics(model):
"""Prints model statistics for reference purposes
Prints network output strides, and tile delta for streaming
Parameters
----------
model : pytorch lightning model object
"""
tile_stride = model.configure_tile_stride()
network_output_stride = model.stream_network.output_stride[1]
return tile_stride, network_output_stride
def get_streaming_options(options):
fields = [
"statistics_on_cpu",
"normalize_on_gpu",
"copy_to_gpu",
"verbose",
]
opt_dict = options.to_dict()
return {key: opt_dict[key] for key in fields}
def configure_streamingclam(options, streaming_options):
sclam_opts = {
"encoder": options.encoder,
"tile_size": options.tile_size,
"loss_fn": options.loss_fn,
"branch": options.branch,
"n_classes": options.num_classes,
"pooling_layer": options.pooling_layer,
"pooling_kernel": options.pooling_kernel,
"stream_pooling_kernel": options.stream_pooling_kernel,
"train_streaming_layers": options.train_streaming_layers,
"instance_eval": options.instance_eval,
"return_features": options.return_features,
"attention_only": options.attention_only,
"unfreeze_at_epoch": options.unfreeze_streaming_layers_at_epoch,
"learning_rate": options.learning_rate,
"additive": options.additive,
"write_attention": True
}
if options.mode == "fit":
model = StreamingCLAM(
**sclam_opts,
**streaming_options,
)
else:
model = StreamingCLAM.load_from_checkpoint(
options.ckp_path,
**sclam_opts,
**streaming_options,
)
return model
def configure_datamodule(options):
return StreamingCLAMDataModule(
image_dir=options.image_path,
level=options.read_level,
tile_size=options.tile_size,
tile_stride=options.tile_stride,
network_output_stride=options.network_output_stride,
train_csv_path=options.train_csv,
val_csv_path=options.val_csv,
test_csv_path=options.test_csv,
attention_csv_path=options.attention_csv,
tissue_mask_dir=options.mask_path,
mask_suffix=options.mask_suffix,
image_size=options.image_size,
variable_input_shapes=options.variable_input_shapes,
copy_to_gpu=options.copy_to_gpu,
num_workers=options.num_workers,
transform=augmentations if (options.use_augmentations and options.mode == "fit") else None,
output_dir=Path(options.default_save_dir) / Path(f"/{options.experiment_name}/attentions")
)
def get_options():
# Read json config from file
options = TrainConfig()
parser = options.configure_parser_with_options()
args = parser.parse_args()
options.parser_to_options(vars(args))
return options
if __name__ == "__main__":
pl.seed_everything(1)
options = get_options()
streaming_options = get_streaming_options(options)
model = configure_streamingclam(options, streaming_options)
tile_stride, network_output_stride = get_model_statistics(model)
options.tile_stride = tile_stride
if options.stream_pooling_kernel:
options.network_output_stride = network_output_stride
else:
options.network_output_stride = max(network_output_stride * options.pooling_kernel, network_output_stride)
dm = configure_datamodule(options)
dm.setup(stage=options.mode)
if options.mode == "fit":
wandb_logger = WandbLogger(
name=options.experiment_name,
project=options.wandb_project_name,
save_dir="/home/stephandooper",
)
trainer = configure_trainer(options, wandb_logger)
# log gradients, parameter histogram and model topology
if trainer.global_rank == 0:
print("at rank 0, logging wandb config")
wandb_logger.experiment.config.update(options.to_dict())
last_checkpoint_path = configure_checkpoints()
# model.head = torch.compile(model.head)
# model.stream_network.stream_module = torch.compile(model.stream_network.stream_module)
# print(model.stream_network)
trainer.fit(
model=model,
datamodule=dm,
ckpt_path=last_checkpoint_path if (options.resume and last_checkpoint_path) else None,
)
elif options.mode=="attention" or options.mode=="test":
trainer = configure_trainer(options)
if options.mode=="attention":
trainer.predict(model=model, datamodule=dm,)
elif options.mode=="test":
trainer.test(model=model, datamodule=dm,)
else:
raise ValueError("mode must be one of fit, test, attention, or predict, found {}".format(options.mode))
# DO: