forked from FuxiComputerVision/Nefii
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrender.py
497 lines (414 loc) · 25.7 KB
/
render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import argparse
import os
import sys
file_path = os.path.abspath(__file__)
code_root = os.path.abspath(os.path.join(os.path.dirname(file_path), "../"))
sys.path.append(code_root)
import time
from datetime import datetime
from tqdm import tqdm
import imageio
import numpy as np
import torch
import torch.distributed as dist
from pyhocon import ConfigFactory
import utils.general as utils
import utils.plots as plt
from model.pixel_pair_generator import PixelPairGenerator
from model.sg_render import compute_envmap
from utils import rend_util
from utils.sampler import SamplerGivenSeq, SamplerRandomChoice
from training.exp_runner import add_argument
imageio.plugins.freeimage.download()
class IDRTrainRunner():
def __init__(self,**kwargs):
torch.set_default_dtype(torch.float32)
torch.set_num_threads(1)
self.local_rank = kwargs.get("local_rank", -1)
self.multiprocessing = self.local_rank > -1
if self.multiprocessing:
torch.cuda.set_device(self.local_rank)
dist.init_process_group(backend='nccl')
self.device = torch.device("cuda", self.local_rank)
self.gpu_num = 1 # disable manual split data into multiple gpu
self.world_size = dist.get_world_size()
else:
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.gpu_num = torch.cuda.device_count() if torch.cuda.is_available() else 1
self.world_size = 1
self.conf = ConfigFactory.parse_file(kwargs['conf'])
self.batch_size = kwargs['batch_size']
self.memory_capacity_level = kwargs['memory_capacity_level']
self.nepochs = kwargs['nepochs']
self.max_niters = kwargs['max_niters']
self.exps_folder_name = kwargs['exps_folder_name']
# self.GPU_INDEX = kwargs['gpu_index']
self.write_idr = kwargs['write_idr']
self.start_index = kwargs['start_index']
self.freeze_geometry = kwargs['freeze_geometry']
self.train_cameras = kwargs['train_cameras']
self.freeze_decompose_render = kwargs['freeze_decompose_render']
self.freeze_idr = kwargs['freeze_idr']
self.freeze_light = kwargs['freeze_light']
self.freeze_diffuse = kwargs['freeze_diffuse']
self.pretrain_geometry_path = kwargs['pretrain_geometry_path']
self.pretrain_idr_rendering_path = kwargs['pretrain_idr_rendering_path']
self.light_sg_path = kwargs['light_sg_path']
self.pretrain_diffuse_path = kwargs['pretrain_diffuse_path']
self.coordinate_type = kwargs['coordinate_type']
self.expname = kwargs['expname']
print(kwargs['timestamp'])
if kwargs['is_continue'] and kwargs['timestamp'] == 'latest':
expdir = str(kwargs['old_expdir']) if str(kwargs['old_expdir']) else os.path.join(kwargs['exps_folder_name'],self.expname)
if os.path.exists(expdir):
timestamps = os.listdir(expdir)
timestamps = [s for s in timestamps if '.' not in s]
if (len(timestamps)) == 0:
is_continue = False
timestamp = None
else:
timestamp = sorted(timestamps)[-1]
is_continue = True
else:
is_continue = False
timestamp = None
else:
timestamp = kwargs['timestamp']
is_continue = kwargs['is_continue']
self.model_params_subdir = "ModelParameters"
self.idr_optimizer_params_subdir = "IDROptimizerParameters"
self.idr_scheduler_params_subdir = "IDRSchedulerParameters"
self.sg_optimizer_params_subdir = "SGOptimizerParameters"
self.sg_scheduler_params_subdir = "SGSchedulerParameters"
if self.train_cameras:
self.optimizer_cam_params_subdir = "OptimizerCamParameters"
self.cam_params_subdir = "CamParameters"
if not self.multiprocessing or dist.get_rank() == 0:
utils.mkdir_ifnotexists(os.path.join(self.exps_folder_name))
self.expdir = os.path.join(self.exps_folder_name, self.expname)
utils.mkdir_ifnotexists(self.expdir)
self.timestamp = '{:%Y_%m_%d_%H_%M_%S}'.format(datetime.now())
utils.mkdir_ifnotexists(os.path.join(self.expdir, self.timestamp))
self.plots_dir = os.path.join(self.expdir, self.timestamp, 'plots')
utils.mkdir_ifnotexists(self.plots_dir)
# create checkpoints dirs
self.checkpoints_path = os.path.join(self.expdir, self.timestamp, 'checkpoints')
utils.mkdir_ifnotexists(self.checkpoints_path)
utils.mkdir_ifnotexists(os.path.join(self.checkpoints_path, self.model_params_subdir))
utils.mkdir_ifnotexists(os.path.join(self.checkpoints_path, self.idr_optimizer_params_subdir))
utils.mkdir_ifnotexists(os.path.join(self.checkpoints_path, self.idr_scheduler_params_subdir))
utils.mkdir_ifnotexists(os.path.join(self.checkpoints_path, self.sg_optimizer_params_subdir))
utils.mkdir_ifnotexists(os.path.join(self.checkpoints_path, self.sg_scheduler_params_subdir))
if self.train_cameras:
utils.mkdir_ifnotexists(os.path.join(self.checkpoints_path, self.optimizer_cam_params_subdir))
utils.mkdir_ifnotexists(os.path.join(self.checkpoints_path, self.cam_params_subdir))
os.system("""cp -r {0} "{1}" """.format(kwargs['conf'], os.path.join(self.expdir, self.timestamp, 'runconf.conf')))
# if (not self.GPU_INDEX == 'ignore'):
# os.environ["CUDA_VISIBLE_DEVICES"] = '{0}'.format(self.GPU_INDEX)
print('shell command : {0}'.format(' '.join(sys.argv)))
print('Loading data ...')
self.train_dataset = utils.get_class(self.conf.get_string('train.dataset_class'))(kwargs['gamma'],
kwargs['data_split_dir'], self.train_cameras, kwargs['subsample'])
# self.train_dataset.return_single_img('rgb_000000.exr')
self.train_dataloader = torch.utils.data.DataLoader(self.train_dataset,
batch_size=self.batch_size,
shuffle=True,
collate_fn=self.train_dataset.collate_fn
)
self.plot_dataset = utils.get_class(self.conf.get_string('train.dataset_class'))(kwargs['gamma'],
kwargs['data_split_dir'], self.train_cameras, kwargs['subsample'] * kwargs['vis_subsample'])
# self.plot_dataset.return_single_img('rgb_000000.exr')
vis_train_num = 1
self.plot_dataloader = torch.utils.data.DataLoader(self.plot_dataset,
batch_size=self.conf.get_int('plot.plot_nimgs'),
shuffle=False,
collate_fn=self.train_dataset.collate_fn,
sampler=SamplerRandomChoice(self.plot_dataset, vis_train_num)
)
self.test_dataset = utils.get_class(self.conf.get_string('train.dataset_class'))(kwargs['gamma'],
kwargs['data_split_dir_test'],
train_cameras=False, subsample=kwargs['subsample'] * kwargs['vis_subsample'])
# test_ids = [43]
test_ids = list(range(self.start_index, len(self.test_dataset)))
self.test_dataloader = torch.utils.data.DataLoader(self.test_dataset,
batch_size=1,
shuffle=False,
collate_fn=self.test_dataset.collate_fn,
sampler=SamplerGivenSeq(test_ids)
)
self.model = utils.get_class(self.conf.get_string('train.model_class'))(conf=self.conf.get_config('model'))
self.model.to(self.device)
self.loss = utils.get_class(self.conf.get_string('train.loss_class'))(**self.conf.get_config('loss'))
if self.loss.view_diff_weight > 0:
self.pixel_pair_generator = PixelPairGenerator(self.train_dataset, self.model)
# settings for camera optimization
if self.train_cameras:
num_images = len(self.train_dataset)
self.pose_vecs = torch.nn.Embedding(num_images, 7, sparse=True).cuda()
self.pose_vecs.weight.data.copy_(self.train_dataset.get_pose_init())
if self.pretrain_idr_rendering_path and os.path.exists(self.pretrain_idr_rendering_path):
print("Loading idr rendering from: ", self.pretrain_idr_rendering_path)
pretrain_idr_rendering_ckp = torch.load(self.pretrain_idr_rendering_path)["model_state_dict"]
pretrain_idr_rendering_dict = {
k: v for k, v in pretrain_idr_rendering_ckp.items() if k.split('.')[0] == 'rendering_network'
}
model_dict = self.model.state_dict()
model_dict.update(pretrain_idr_rendering_dict)
self.model.load_state_dict(model_dict)
if self.pretrain_diffuse_path and os.path.exists(self.pretrain_diffuse_path):
print("Loading diffuse network from: ", self.pretrain_diffuse_path)
pretrain_diffuse_ckp = torch.load(self.pretrain_diffuse_path)["model_state_dict"]
pretrain_diffuse_dict = {
k: v for k, v in pretrain_diffuse_ckp.items()
if k.split('.')[0] == 'envmap_material_network'
and k.split('.')[1] == 'diffuse_albedo_layers'
}
model_dict = self.model.state_dict()
model_dict.update(pretrain_diffuse_dict)
self.model.load_state_dict(model_dict)
# load light
if self.light_sg_path and os.path.exists(self.light_sg_path):
print('Loading light from: ', self.light_sg_path)
self.model.envmap_material_network.load_light(self.light_sg_path)
self.start_epoch = 0
if is_continue:
expdir = os.path.join(self.exps_folder_name, str(kwargs['old_expdir'])) if str(kwargs['old_expdir']) else self.expdir
old_checkpnts_dir = os.path.join(expdir, timestamp, 'checkpoints')
print('Loading checkpoint model: ', os.path.join(old_checkpnts_dir, self.model_params_subdir, str(kwargs['checkpoint']) + ".pth"))
saved_model_state = torch.load(
os.path.join(old_checkpnts_dir, self.model_params_subdir, str(kwargs['checkpoint']) + ".pth"), map_location=self.device)
self.model.load_state_dict(saved_model_state["model_state_dict"])
self.start_epoch = saved_model_state['epoch']
if self.train_cameras:
data = torch.load(
os.path.join(old_checkpnts_dir, self.cam_params_subdir, str(kwargs['checkpoint']) + ".pth"),
map_location=self.device)
self.pose_vecs.load_state_dict(data["pose_vecs_state_dict"])
if kwargs['geometry'].endswith('.pth'):
print('Reloading geometry from: ', kwargs['geometry'])
geometry = torch.load(kwargs['geometry'], map_location=self.device)['model_state_dict']
geometry = {k: v for k, v in geometry.items() if 'implicit_network' in k}
print(geometry.keys())
model_dict = self.model.state_dict()
model_dict.update(geometry)
self.model.load_state_dict(model_dict)
if self.multiprocessing:
self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[self.local_rank], output_device=self.local_rank, find_unused_parameters=True)
elif torch.cuda.is_available():
self.model = torch.nn.DataParallel(self.model)
# self.model = self.model.cuda()
self.num_pixels = self.conf.get_int('train.num_pixels')
self.num_rays = kwargs["num_rays"]
self.total_pixels = self.train_dataset.total_pixels
self.img_res = self.train_dataset.img_res
self.n_batches = len(self.train_dataloader)
self.plot_freq = self.conf.get_int('train.plot_freq')
self.val_freq = self.conf.get_int('train.val_freq')
self.plot_conf = self.conf.get_config('plot')
self.ckpt_freq = self.conf.get_int('train.ckpt_freq')
self.alpha_milestones = self.conf.get_list('train.alpha_milestones', default=[])
self.alpha_factor = self.conf.get_float('train.alpha_factor', default=0.0)
for acc in self.alpha_milestones:
if self.start_epoch * self.n_batches > acc:
self.loss.alpha = self.loss.alpha * self.alpha_factor
def vis_test(self):
self.basic_vis('val', self.test_dataloader)
def vis_train(self):
self.basic_vis('train', self.plot_dataloader, show_img_id=False)
def basic_vis(self, dataloader):
self.model.eval()
tonemap_img = lambda x: torch.pow(x, 1. / 2.2)
clip_img = lambda x: torch.clamp(x, min=0., max=1.)
# fetch data of some ids
dataloader.dataset.change_sampling_rays(self.num_rays)
for data_index, (indices, model_input, ground_truth) in tqdm(enumerate(dataloader)):
model_input["intrinsics"] = model_input["intrinsics"].cuda()
model_input["uv"] = model_input["uv"].cuda()
model_input["object_mask"] = model_input["object_mask"].cuda()
model_input['pose'] = model_input['pose'].cuda()
gt_rgb = ground_truth['rgb'].cuda()
# run result
if self.multiprocessing:
memory_capacity_level = self.memory_capacity_level - int(np.floor(np.log2(dist.get_world_size())))
split = utils.split_input(model_input, dataloader.dataset.total_pixels, self.num_rays,
memory_capacity_level)
# remap split list for computation balance
split_tmp = []
for i in range(dist.get_world_size()):
split_tmp += split[i:len(split):dist.get_world_size()]
split = split_tmp
split_tmp_len = len(split_tmp)
split = utils.scatter_list(split, len(split), dist.get_rank(), dist.get_world_size())
else:
split = utils.split_input(model_input, dataloader.dataset.total_pixels, self.num_rays,
self.memory_capacity_level)
del model_input["uv"]
del model_input["object_mask"]
torch.cuda.empty_cache()
with torch.no_grad():
res = []
for s in split:
# print("%d/%d" % (len(res), len(split)))
s = utils.batchlize_input(s, self.gpu_num)
with torch.no_grad():
out = self.model(s)
res.append({
'points': out['points'].detach(),
'idr_rgb_values': out['idr_rgb_values'].detach(),
'sg_rgb_values': out['sg_rgb_values'].detach(),
'network_object_mask': out['network_object_mask'].detach(),
'object_mask': out['object_mask'].detach(),
'normal_values': out['normal_values'].detach(),
'sg_diffuse_albedo_values': out['sg_diffuse_albedo_values'].detach(),
'sg_diffuse_rgb_values': out['sg_diffuse_rgb_values'].detach(),
'sg_specular_rgb_values': out['sg_specular_rgb_values'].detach(),
'sg_roughness_values': out['sg_roughness_values'].detach(),
'sg_specular_reflection_values': out['sg_specular_reflection_values'].detach(),
})
del split
if self.multiprocessing: del split_tmp
# gather if multiprocessing
if self.multiprocessing:
res_gathered = [None for _ in range(dist.get_world_size())]
dist.gather_object(
res,
res_gathered if dist.get_rank() == 0 else None,
dst=0
)
if dist.get_rank() == 0:
# flatten and recover res order and transfer to the same device
res_tmp = []
for i in range(len(res_gathered)):
res_tmp += res_gathered[i]
res_gathered = res_tmp
res_tmp = [None for i in range(split_tmp_len)]
remapped_index = 0
for i in range(dist.get_world_size()):
for src_index in range(i, len(res_tmp), dist.get_world_size()):
res_tmp[src_index] = res_gathered[remapped_index]
for key in res_tmp[src_index].keys():
res_tmp[src_index][key] = res_tmp[src_index][key].cpu() # transfer to the same device
remapped_index += 1
res = res_tmp
if not self.multiprocessing or dist.get_rank() == 0:
batch_size, num_samples, _ = gt_rgb.shape
model_outputs = utils.merge_output(res, dataloader.dataset.total_pixels, batch_size)
for key in model_outputs.keys():
model_outputs[key] = model_outputs[key].cuda()
with torch.no_grad():
# convert result to image style
rgb_data = {
'gt_rgb': gt_rgb,
'sg_rgb': model_outputs['sg_rgb_values'],
'idr_rgb': model_outputs['idr_rgb_values'],
'diffuse_albedo': model_outputs['sg_diffuse_albedo_values'],
'diffuse_rgb': model_outputs['sg_diffuse_rgb_values'],
'specular_rgb': model_outputs['sg_specular_rgb_values']
}
for k in rgb_data.keys():
rgb_data[k] = (rgb_data[k]).reshape(batch_size, num_samples, 3)
# rgb_data[k] = clip_img(tonemap_img(rgb_data[k]))
rgb_data[k] = plt.lin2img(rgb_data[k], dataloader.dataset.img_res)
normal_map = model_outputs['normal_values']
normal_map = normal_map.reshape(batch_size, num_samples, 3)
normal_map = clip_img((normal_map + 1.) / 2.)
normal_map = plt.lin2img(normal_map, dataloader.dataset.img_res)
network_object_mask = model_outputs['network_object_mask']
points = model_outputs['points'].reshape(batch_size, num_samples, 3)
depth = torch.ones(batch_size * num_samples).cuda().float()
if network_object_mask.sum() > 0:
depth_valid = rend_util.get_depth(points, model_input['pose']).reshape(-1)[network_object_mask]
depth[network_object_mask] = depth_valid
depth[~network_object_mask] = 0.98 * depth_valid.min()
raw_data = {
'sg_roughness_values': model_outputs['sg_roughness_values'],
'sg_specular_reflection_values': model_outputs['sg_specular_reflection_values'],
'depth': depth
}
raw_data['sg_specular_reflection_values'] = self.model.module.envmap_material_network.specular_inv_remap(raw_data['sg_specular_reflection_values'])
for k in raw_data.keys():
if len(raw_data[k].shape) == 1:
raw_data[k] = raw_data[k].unsqueeze(-1)
if raw_data[k].shape[-1] == 1:
raw_data[k] = raw_data[k].expand(list(raw_data[k].shape[:-1]) + [3])
raw_data[k] = (raw_data[k]).reshape(batch_size, num_samples, 3)
raw_data[k] = plt.lin2img(raw_data[k], dataloader.dataset.img_res)
imageio.imwrite(os.path.join(self.plots_dir, 'gt-%03d.exr' % indices[0].item()),
rgb_data['gt_rgb'][0].permute(1, 2, 0).cpu().numpy())
imageio.imwrite(os.path.join(self.plots_dir, 'rerender_rgb-%03d.exr' % indices[0].item()),
rgb_data['sg_rgb'][0].permute(1, 2, 0).cpu().numpy())
imageio.imwrite(os.path.join(self.plots_dir, 'diffuse_rgb-%03d.exr' % indices[0].item()),
rgb_data['diffuse_rgb'][0].permute(1, 2, 0).cpu().numpy())
imageio.imwrite(os.path.join(self.plots_dir, 'specular_rgb-%03d.exr' % indices[0].item()),
rgb_data['specular_rgb'][0].permute(1, 2, 0).cpu().numpy())
imageio.imwrite(os.path.join(self.plots_dir, 'diffuse_albedo-%03d.exr' % indices[0].item()),
rgb_data['diffuse_albedo'][0].permute(1, 2, 0).cpu().numpy())
imageio.imwrite(os.path.join(self.plots_dir, 'roughness-%03d.exr' % indices[0].item()),
raw_data['sg_roughness_values'][0].permute(1, 2, 0).cpu().numpy())
imageio.imwrite(os.path.join(self.plots_dir, 'specular_reflection-%03d.exr' % indices[0].item()),
raw_data['sg_specular_reflection_values'][0].permute(1, 2, 0).cpu().numpy())
# output result for visualization
for k in rgb_data.keys():
rgb_data[k] = clip_img(tonemap_img(rgb_data[k]))
img_stacked = plt.horizontal_image_tensor(
rgb_data['gt_rgb'], rgb_data['sg_rgb'], rgb_data['diffuse_rgb'], rgb_data['specular_rgb'],
normal_map, rgb_data['diffuse_albedo'], raw_data['sg_roughness_values'],
raw_data['sg_specular_reflection_values'])
img = img_stacked[0].permute(1, 2, 0).cpu().numpy()
imageio.imwrite(os.path.join(self.plots_dir, 'render_%03d.png' % indices[0].item()), img)
if not self.multiprocessing or dist.get_rank() == 0:
with torch.no_grad():
# vis envmap
envmap = compute_envmap(lgtSGs=self.model.module.envmap_material_network.get_light(), H=256, W=512,
upper_hemi=self.model.module.envmap_material_network.upper_hemi,
log=False,
coordinate_type=self.coordinate_type,
envmap_type=self.model.module.envmap_material_network.light_type) # HxWx3
# envmap = envmap.permute(2, 0, 1) # CxHxW
# envmap = clip_img(tonemap_img(envmap))
imageio.imwrite(os.path.join(self.plots_dir, 'envmap.exr'), envmap.cpu().numpy())
self.model.train()
def run(self):
print("rendering...")
self.basic_vis(self.test_dataloader)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser = add_argument(parser)
parser.add_argument('--start_index', type=int, default=0, help='start index')
parser.add_argument('--num_rays', type=int, default=256, help='ray number')
opt = parser.parse_args()
trainrunner = IDRTrainRunner(conf=opt.conf,
data_split_dir=opt.data_split_dir,
data_split_dir_test=opt.data_split_dir_test,
gamma=opt.gamma,
coordinate_type=opt.coordinate_type,
geometry=opt.geometry,
freeze_geometry=opt.freeze_geometry,
freeze_decompose_render=opt.freeze_decompose_render,
freeze_light=opt.freeze_light,
freeze_diffuse=opt.freeze_diffuse,
train_cameras=opt.train_cameras,
batch_size=opt.batch_size,
memory_capacity_level=opt.memory_capacity_level,
nepochs=opt.nepoch,
max_niters=opt.max_niter,
expname=opt.expname,
# gpu_index=gpu,
exps_folder_name=opt.exps_folder_name,
is_continue=opt.is_continue,
old_expdir=opt.old_expdir,
timestamp=opt.timestamp,
checkpoint=opt.checkpoint,
freeze_idr=opt.freeze_idr,
write_idr=opt.write_idr,
pretrain_geometry_path=opt.pretrain_geometry_path,
pretrain_idr_rendering_path=opt.pretrain_idr_rendering_path,
pretrain_diffuse_path=opt.pretrain_diffuse_path,
light_sg_path=opt.light_sg_path,
subsample=opt.subsample,
vis_subsample=opt.vis_subsample,
local_rank=opt.local_rank,
start_index=opt.start_index,
num_rays=opt.num_rays,
)
trainrunner.run()