forked from ubc-vision/image-matching-benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_feature.py
172 lines (141 loc) · 5.57 KB
/
compute_feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Copyright 2020 Google LLC, University of Victoria, Czech Technical University
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from tqdm import tqdm
from config import get_config
from methods import local_feature as lfeat
from utils.io_helper import save_h5
from utils.path_helper import (get_data_path, get_desc_file, get_feature_path,
get_fullpath_list, get_item_name_list,
get_kp_file, get_angle_file, get_scale_file,
get_affine_file, get_score_file)
import cv2
def compute_per_img_file(img_path, cfg):
'''Computes features and returns them.
Parameters
----------
img_path: str
Path to the image file to work on
cfg: Namespace
Configuration arguments
Returns
-------
keypoints: list
List of keypoints
descriptors: list
List of descriptors
'''
if cfg.num_opencv_threads > 0:
cv2.setNumThreads(cfg.num_opencv_threads)
# Check if we know this keypoint detector
kp = cfg.method_dict['config_common']['keypoint'].lower()
desc = cfg.method_dict['config_common']['descriptor'].lower()
# SIFT and root-SIFT, with CLAHE
if kp in [
u + v for u in ['sift-def', 'sift-lowth'] for v in ['', '-clahe']
]:
if desc in [
u + v + w for u in ['sift', 'rootsift']
for v in ['', '-clahe'] for w in ['', '-upright', '-upright--']
]:
return lfeat.sift.run(img_path, cfg)
# ORB
if kp == 'orb' and desc == 'orb':
return lfeat.orb.run(img_path, cfg)
# SURF
if kp in ['surf-def', 'surf-lowth'] and desc == 'surf':
return lfeat.surf.run(img_path, cfg)
# AKAZE
if kp in ['akaze-def', 'akaze-lowth'] and desc == 'akaze':
return lfeat.akaze.run(img_path, cfg)
# FREAK
if kp in ['freak-def', 'freak-lowth'] and desc == 'freak':
return lfeat.freak.run(img_path, cfg)
# Preserving this for now
if kp == 'sift8k' and desc == 'affnethardnetextract':
return lfeat.sift8k_affnethardnetextract.run(img_path, cfg)
if kp == 'sift8k' and desc == 'hardnetextract':
return lfeat.sift8k_hardnetextract.run(img_path, cfg)
raise RuntimeError('Unknown keypoint/descriptor combination')
def main(cfg):
'''Main function to compute features.
Parameters
----------
cfg: Namespace
Configuration
'''
if os.path.exists(get_kp_file(cfg)) and os.path.exists(get_desc_file(cfg)):
print(' -- already exists, skipping feature extraction')
return
# Get data directory
data_dir = get_data_path(cfg)
# Get list of all images and visibility files in the 'set_100'
images_list = get_fullpath_list(data_dir, 'images')
# Also create a list which only contains the image names, so that it can be
# used as keys in the dictionary later
image_names = get_item_name_list(images_list)
# Create folder
save_dir = get_feature_path(cfg)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# Compute and save keypoints and descriptors
#
# Parallel processing actually slows down stuff, because opencv is already
# using multiple threads. We just simply go through one by one without
# parallel processing for now
print('Extracting Keypoints and Descriptors:')
result = []
for img_path in tqdm(images_list):
result.append(compute_per_img_file(img_path, cfg))
# num_cores = int(multiprocessing.cpu_count() * 0.9)
# print('Extracting Keypoints and Descriptors:')
# result = Parallel(n_jobs=num_cores)(delayed(compute_per_img_file)(
# img_path, cfg) for img_path in tqdm(images_list))
# Save keypoints and descriptors
kp_dict = {}
scale_dict = {}
angle_dict = {}
score_dict = {}
descs_dict = {}
affine_dict = {}
for _i in range(len(image_names)):
assert 'kp' in result[_i], 'Must provide keypoints'
assert 'descs' in result[_i], 'Must provide descriptors'
if 'kp' in result[_i]:
kp_dict[image_names[_i]] = result[_i]['kp']
if 'scale' in result[_i]:
scale_dict[image_names[_i]] = result[_i]['scale']
if 'angle' in result[_i]:
angle_dict[image_names[_i]] = result[_i]['angle']
if 'affine' in result[_i]:
affine_dict[image_names[_i]] = result[_i]['affine']
if 'score' in result[_i]:
score_dict[image_names[_i]] = result[_i]['score']
if 'descs' in result[_i]:
descs_dict[image_names[_i]] = result[_i]['descs']
# Finally, save packed keypoints and descriptors
save_h5(kp_dict, get_kp_file(cfg))
save_h5(scale_dict, get_scale_file(cfg))
save_h5(angle_dict, get_angle_file(cfg))
save_h5(score_dict, get_score_file(cfg))
save_h5(descs_dict, get_desc_file(cfg))
save_h5(affine_dict, get_affine_file(cfg))
if __name__ == '__main__':
cfg, unparsed = get_config()
# If we have unparsed arguments, print usage and exit
if len(unparsed) > 0:
print(unparsed)
print_usage()
exit(1)
main(cfg)