-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblock-group.c
3845 lines (3370 loc) · 111 KB
/
block-group.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: GPL-2.0
#include "misc.h"
#include "ctree.h"
#include "block-group.h"
#include "space-info.h"
#include "disk-io.h"
#include "free-space-cache.h"
#include "free-space-tree.h"
#include "volumes.h"
#include "transaction.h"
#include "ref-verify.h"
#include "sysfs.h"
#include "tree-log.h"
#include "delalloc-space.h"
#include "discard.h"
#include "raid56.h"
#include "zoned.h"
#include "apfs_trace.h"
/*
* Return target flags in extended format or 0 if restripe for this chunk_type
* is not in progress
*
* Should be called with balance_lock held
*/
static u64 get_restripe_target(struct apfs_fs_info *fs_info, u64 flags)
{
struct apfs_balance_control *bctl = fs_info->balance_ctl;
u64 target = 0;
if (!bctl)
return 0;
if (flags & APFS_BLOCK_GROUP_DATA &&
bctl->data.flags & APFS_BALANCE_ARGS_CONVERT) {
target = APFS_BLOCK_GROUP_DATA | bctl->data.target;
} else if (flags & APFS_BLOCK_GROUP_SYSTEM &&
bctl->sys.flags & APFS_BALANCE_ARGS_CONVERT) {
target = APFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
} else if (flags & APFS_BLOCK_GROUP_METADATA &&
bctl->meta.flags & APFS_BALANCE_ARGS_CONVERT) {
target = APFS_BLOCK_GROUP_METADATA | bctl->meta.target;
}
return target;
}
/*
* @flags: available profiles in extended format (see ctree.h)
*
* Return reduced profile in chunk format. If profile changing is in progress
* (either running or paused) picks the target profile (if it's already
* available), otherwise falls back to plain reducing.
*/
static u64 apfs_reduce_alloc_profile(struct apfs_fs_info *fs_info, u64 flags)
{
u64 num_devices = fs_info->fs_devices->rw_devices;
u64 target;
u64 raid_type;
u64 allowed = 0;
/*
* See if restripe for this chunk_type is in progress, if so try to
* reduce to the target profile
*/
spin_lock(&fs_info->balance_lock);
target = get_restripe_target(fs_info, flags);
if (target) {
spin_unlock(&fs_info->balance_lock);
return extended_to_chunk(target);
}
spin_unlock(&fs_info->balance_lock);
/* First, mask out the RAID levels which aren't possible */
for (raid_type = 0; raid_type < APFS_NR_RAID_TYPES; raid_type++) {
if (num_devices >= apfs_raid_array[raid_type].devs_min)
allowed |= apfs_raid_array[raid_type].bg_flag;
}
allowed &= flags;
if (allowed & APFS_BLOCK_GROUP_RAID6)
allowed = APFS_BLOCK_GROUP_RAID6;
else if (allowed & APFS_BLOCK_GROUP_RAID5)
allowed = APFS_BLOCK_GROUP_RAID5;
else if (allowed & APFS_BLOCK_GROUP_RAID10)
allowed = APFS_BLOCK_GROUP_RAID10;
else if (allowed & APFS_BLOCK_GROUP_RAID1)
allowed = APFS_BLOCK_GROUP_RAID1;
else if (allowed & APFS_BLOCK_GROUP_RAID0)
allowed = APFS_BLOCK_GROUP_RAID0;
flags &= ~APFS_BLOCK_GROUP_PROFILE_MASK;
return extended_to_chunk(flags | allowed);
}
u64 apfs_get_alloc_profile(struct apfs_fs_info *fs_info, u64 orig_flags)
{
unsigned seq;
u64 flags;
do {
flags = orig_flags;
seq = read_seqbegin(&fs_info->profiles_lock);
if (flags & APFS_BLOCK_GROUP_DATA)
flags |= fs_info->avail_data_alloc_bits;
else if (flags & APFS_BLOCK_GROUP_SYSTEM)
flags |= fs_info->avail_system_alloc_bits;
else if (flags & APFS_BLOCK_GROUP_METADATA)
flags |= fs_info->avail_metadata_alloc_bits;
} while (read_seqretry(&fs_info->profiles_lock, seq));
return apfs_reduce_alloc_profile(fs_info, flags);
}
void apfs_get_block_group(struct apfs_block_group *cache)
{
refcount_inc(&cache->refs);
}
void apfs_put_block_group(struct apfs_block_group *cache)
{
if (refcount_dec_and_test(&cache->refs)) {
WARN_ON(cache->pinned > 0);
WARN_ON(cache->reserved > 0);
/*
* A block_group shouldn't be on the discard_list anymore.
* Remove the block_group from the discard_list to prevent us
* from causing a panic due to NULL pointer dereference.
*/
if (WARN_ON(!list_empty(&cache->discard_list)))
apfs_discard_cancel_work(&cache->fs_info->discard_ctl,
cache);
/*
* If not empty, someone is still holding mutex of
* full_stripe_lock, which can only be released by caller.
* And it will definitely cause use-after-free when caller
* tries to release full stripe lock.
*
* No better way to resolve, but only to warn.
*/
WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
kfree(cache->free_space_ctl);
kfree(cache);
}
}
/*
* This adds the block group to the fs_info rb tree for the block group cache
*/
static int apfs_add_block_group_cache(struct apfs_fs_info *info,
struct apfs_block_group *block_group)
{
struct rb_node **p;
struct rb_node *parent = NULL;
struct apfs_block_group *cache;
ASSERT(block_group->length != 0);
spin_lock(&info->block_group_cache_lock);
p = &info->block_group_cache_tree.rb_node;
while (*p) {
parent = *p;
cache = rb_entry(parent, struct apfs_block_group, cache_node);
if (block_group->start < cache->start) {
p = &(*p)->rb_left;
} else if (block_group->start > cache->start) {
p = &(*p)->rb_right;
} else {
spin_unlock(&info->block_group_cache_lock);
return -EEXIST;
}
}
rb_link_node(&block_group->cache_node, parent, p);
rb_insert_color(&block_group->cache_node,
&info->block_group_cache_tree);
if (info->first_logical_byte > block_group->start)
info->first_logical_byte = block_group->start;
spin_unlock(&info->block_group_cache_lock);
return 0;
}
/*
* This will return the block group at or after bytenr if contains is 0, else
* it will return the block group that contains the bytenr
*/
static struct apfs_block_group *block_group_cache_tree_search(
struct apfs_fs_info *info, u64 bytenr, int contains)
{
struct apfs_block_group *cache, *ret = NULL;
struct rb_node *n;
u64 end, start;
spin_lock(&info->block_group_cache_lock);
n = info->block_group_cache_tree.rb_node;
while (n) {
cache = rb_entry(n, struct apfs_block_group, cache_node);
end = cache->start + cache->length - 1;
start = cache->start;
if (bytenr < start) {
if (!contains && (!ret || start < ret->start))
ret = cache;
n = n->rb_left;
} else if (bytenr > start) {
if (contains && bytenr <= end) {
ret = cache;
break;
}
n = n->rb_right;
} else {
ret = cache;
break;
}
}
if (ret) {
apfs_get_block_group(ret);
if (bytenr == 0 && info->first_logical_byte > ret->start)
info->first_logical_byte = ret->start;
}
spin_unlock(&info->block_group_cache_lock);
return ret;
}
/*
* Return the block group that starts at or after bytenr
*/
struct apfs_block_group *apfs_lookup_first_block_group(
struct apfs_fs_info *info, u64 bytenr)
{
return block_group_cache_tree_search(info, bytenr, 0);
}
/*
* Return the block group that contains the given bytenr
*/
struct apfs_block_group *apfs_lookup_block_group(
struct apfs_fs_info *info, u64 bytenr)
{
return block_group_cache_tree_search(info, bytenr, 1);
}
struct apfs_block_group *apfs_next_block_group(
struct apfs_block_group *cache)
{
struct apfs_fs_info *fs_info = cache->fs_info;
struct rb_node *node;
spin_lock(&fs_info->block_group_cache_lock);
/* If our block group was removed, we need a full search. */
if (RB_EMPTY_NODE(&cache->cache_node)) {
const u64 next_bytenr = cache->start + cache->length;
spin_unlock(&fs_info->block_group_cache_lock);
apfs_put_block_group(cache);
cache = apfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
}
node = rb_next(&cache->cache_node);
apfs_put_block_group(cache);
if (node) {
cache = rb_entry(node, struct apfs_block_group, cache_node);
apfs_get_block_group(cache);
} else
cache = NULL;
spin_unlock(&fs_info->block_group_cache_lock);
return cache;
}
bool apfs_inc_nocow_writers(struct apfs_fs_info *fs_info, u64 bytenr)
{
struct apfs_block_group *bg;
bool ret = true;
bg = apfs_lookup_block_group(fs_info, bytenr);
if (!bg)
return false;
spin_lock(&bg->lock);
if (bg->ro)
ret = false;
else
atomic_inc(&bg->nocow_writers);
spin_unlock(&bg->lock);
/* No put on block group, done by apfs_dec_nocow_writers */
if (!ret)
apfs_put_block_group(bg);
return ret;
}
void apfs_dec_nocow_writers(struct apfs_fs_info *fs_info, u64 bytenr)
{
struct apfs_block_group *bg;
bg = apfs_lookup_block_group(fs_info, bytenr);
ASSERT(bg);
if (atomic_dec_and_test(&bg->nocow_writers))
wake_up_var(&bg->nocow_writers);
/*
* Once for our lookup and once for the lookup done by a previous call
* to apfs_inc_nocow_writers()
*/
apfs_put_block_group(bg);
apfs_put_block_group(bg);
}
void apfs_wait_nocow_writers(struct apfs_block_group *bg)
{
wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
}
void apfs_dec_block_group_reservations(struct apfs_fs_info *fs_info,
const u64 start)
{
struct apfs_block_group *bg;
bg = apfs_lookup_block_group(fs_info, start);
ASSERT(bg);
if (atomic_dec_and_test(&bg->reservations))
wake_up_var(&bg->reservations);
apfs_put_block_group(bg);
}
void apfs_wait_block_group_reservations(struct apfs_block_group *bg)
{
struct apfs_space_info *space_info = bg->space_info;
ASSERT(bg->ro);
if (!(bg->flags & APFS_BLOCK_GROUP_DATA))
return;
/*
* Our block group is read only but before we set it to read only,
* some task might have had allocated an extent from it already, but it
* has not yet created a respective ordered extent (and added it to a
* root's list of ordered extents).
* Therefore wait for any task currently allocating extents, since the
* block group's reservations counter is incremented while a read lock
* on the groups' semaphore is held and decremented after releasing
* the read access on that semaphore and creating the ordered extent.
*/
down_write(&space_info->groups_sem);
up_write(&space_info->groups_sem);
wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
}
struct apfs_caching_control *apfs_get_caching_control(
struct apfs_block_group *cache)
{
struct apfs_caching_control *ctl;
spin_lock(&cache->lock);
if (!cache->caching_ctl) {
spin_unlock(&cache->lock);
return NULL;
}
ctl = cache->caching_ctl;
refcount_inc(&ctl->count);
spin_unlock(&cache->lock);
return ctl;
}
void apfs_put_caching_control(struct apfs_caching_control *ctl)
{
if (refcount_dec_and_test(&ctl->count))
kfree(ctl);
}
/*
* When we wait for progress in the block group caching, its because our
* allocation attempt failed at least once. So, we must sleep and let some
* progress happen before we try again.
*
* This function will sleep at least once waiting for new free space to show
* up, and then it will check the block group free space numbers for our min
* num_bytes. Another option is to have it go ahead and look in the rbtree for
* a free extent of a given size, but this is a good start.
*
* Callers of this must check if cache->cached == APFS_CACHE_ERROR before using
* any of the information in this block group.
*/
void apfs_wait_block_group_cache_progress(struct apfs_block_group *cache,
u64 num_bytes)
{
struct apfs_caching_control *caching_ctl;
caching_ctl = apfs_get_caching_control(cache);
if (!caching_ctl)
return;
wait_event(caching_ctl->wait, apfs_block_group_done(cache) ||
(cache->free_space_ctl->free_space >= num_bytes));
apfs_put_caching_control(caching_ctl);
}
int apfs_wait_block_group_cache_done(struct apfs_block_group *cache)
{
struct apfs_caching_control *caching_ctl;
int ret = 0;
caching_ctl = apfs_get_caching_control(cache);
if (!caching_ctl)
return (cache->cached == APFS_CACHE_ERROR) ? -EIO : 0;
wait_event(caching_ctl->wait, apfs_block_group_done(cache));
if (cache->cached == APFS_CACHE_ERROR)
ret = -EIO;
apfs_put_caching_control(caching_ctl);
return ret;
}
static bool space_cache_v1_done(struct apfs_block_group *cache)
{
bool ret;
spin_lock(&cache->lock);
ret = cache->cached != APFS_CACHE_FAST;
spin_unlock(&cache->lock);
return ret;
}
void apfs_wait_space_cache_v1_finished(struct apfs_block_group *cache,
struct apfs_caching_control *caching_ctl)
{
wait_event(caching_ctl->wait, space_cache_v1_done(cache));
}
#ifdef CONFIG_APFS_DEBUG
static void fragment_free_space(struct apfs_block_group *block_group)
{
struct apfs_fs_info *fs_info = block_group->fs_info;
u64 start = block_group->start;
u64 len = block_group->length;
u64 chunk = block_group->flags & APFS_BLOCK_GROUP_METADATA ?
fs_info->nodesize : fs_info->sectorsize;
u64 step = chunk << 1;
while (len > chunk) {
apfs_remove_free_space(block_group, start, chunk);
start += step;
if (len < step)
len = 0;
else
len -= step;
}
}
#endif
/*
* This is only called by apfs_cache_block_group, since we could have freed
* extents we need to check the pinned_extents for any extents that can't be
* used yet since their free space will be released as soon as the transaction
* commits.
*/
u64 add_new_free_space(struct apfs_block_group *block_group, u64 start, u64 end)
{
struct apfs_fs_info *info = block_group->fs_info;
u64 extent_start, extent_end, size, total_added = 0;
int ret;
while (start < end) {
ret = find_first_extent_bit(&info->excluded_extents, start,
&extent_start, &extent_end,
EXTENT_DIRTY | EXTENT_UPTODATE,
NULL);
if (ret)
break;
if (extent_start <= start) {
start = extent_end + 1;
} else if (extent_start > start && extent_start < end) {
size = extent_start - start;
total_added += size;
ret = apfs_add_free_space_async_trimmed(block_group,
start, size);
BUG_ON(ret); /* -ENOMEM or logic error */
start = extent_end + 1;
} else {
break;
}
}
if (start < end) {
size = end - start;
total_added += size;
ret = apfs_add_free_space_async_trimmed(block_group, start,
size);
BUG_ON(ret); /* -ENOMEM or logic error */
}
return total_added;
}
static int load_extent_tree_free(struct apfs_caching_control *caching_ctl)
{
struct apfs_block_group *block_group = caching_ctl->block_group;
struct apfs_fs_info *fs_info = block_group->fs_info;
struct apfs_root *extent_root = fs_info->extent_root;
struct apfs_path *path;
struct extent_buffer *leaf;
struct apfs_key key = {};
u64 total_found = 0;
u64 last = 0;
u32 nritems;
int ret;
bool wakeup = true;
path = apfs_alloc_path();
if (!path)
return -ENOMEM;
last = max_t(u64, block_group->start, APFS_SUPER_INFO_OFFSET);
#ifdef CONFIG_APFS_DEBUG
/*
* If we're fragmenting we don't want to make anybody think we can
* allocate from this block group until we've had a chance to fragment
* the free space.
*/
if (apfs_should_fragment_free_space(block_group))
wakeup = false;
#endif
/*
* We don't want to deadlock with somebody trying to allocate a new
* extent for the extent root while also trying to search the extent
* root to add free space. So we skip locking and search the commit
* root, since its read-only
*/
path->skip_locking = 1;
path->search_commit_root = 1;
path->reada = READA_FORWARD;
key.objectid = last;
key.offset = 0;
key.type = APFS_EXTENT_ITEM_KEY;
next:
ret = apfs_search_slot(NULL, extent_root, &key, path, 0, 0);
if (ret < 0)
goto out;
leaf = path->nodes[0];
nritems = apfs_header_nritems(leaf);
while (1) {
if (apfs_fs_closing(fs_info) > 1) {
last = (u64)-1;
break;
}
if (path->slots[0] < nritems) {
apfs_item_key_to_cpu(leaf, &key, path->slots[0]);
} else {
ret = apfs_find_next_key(extent_root, path, &key, 0, 0);
if (ret)
break;
if (need_resched() ||
rwsem_is_contended(&fs_info->commit_root_sem)) {
if (wakeup)
caching_ctl->progress = last;
apfs_release_path(path);
up_read(&fs_info->commit_root_sem);
mutex_unlock(&caching_ctl->mutex);
cond_resched();
mutex_lock(&caching_ctl->mutex);
down_read(&fs_info->commit_root_sem);
goto next;
}
ret = apfs_next_leaf(extent_root, path);
if (ret < 0)
goto out;
if (ret)
break;
leaf = path->nodes[0];
nritems = apfs_header_nritems(leaf);
continue;
}
if (key.objectid < last) {
key.objectid = last;
key.offset = 0;
key.type = APFS_EXTENT_ITEM_KEY;
if (wakeup)
caching_ctl->progress = last;
apfs_release_path(path);
goto next;
}
if (key.objectid < block_group->start) {
path->slots[0]++;
continue;
}
if (key.objectid >= block_group->start + block_group->length)
break;
if (key.type == APFS_EXTENT_ITEM_KEY ||
key.type == APFS_METADATA_ITEM_KEY) {
total_found += add_new_free_space(block_group, last,
key.objectid);
if (key.type == APFS_METADATA_ITEM_KEY)
last = key.objectid +
fs_info->nodesize;
else
last = key.objectid + key.offset;
if (total_found > CACHING_CTL_WAKE_UP) {
total_found = 0;
if (wakeup)
wake_up(&caching_ctl->wait);
}
}
path->slots[0]++;
}
ret = 0;
total_found += add_new_free_space(block_group, last,
block_group->start + block_group->length);
caching_ctl->progress = (u64)-1;
out:
apfs_free_path(path);
return ret;
}
static noinline void caching_thread(struct apfs_work *work)
{
struct apfs_block_group *block_group;
struct apfs_fs_info *fs_info;
struct apfs_caching_control *caching_ctl;
int ret;
caching_ctl = container_of(work, struct apfs_caching_control, work);
block_group = caching_ctl->block_group;
fs_info = block_group->fs_info;
mutex_lock(&caching_ctl->mutex);
down_read(&fs_info->commit_root_sem);
if (apfs_test_opt(fs_info, SPACE_CACHE)) {
ret = load_free_space_cache(block_group);
if (ret == 1) {
ret = 0;
goto done;
}
/*
* We failed to load the space cache, set ourselves to
* CACHE_STARTED and carry on.
*/
spin_lock(&block_group->lock);
block_group->cached = APFS_CACHE_STARTED;
spin_unlock(&block_group->lock);
wake_up(&caching_ctl->wait);
}
/*
* If we are in the transaction that populated the free space tree we
* can't actually cache from the free space tree as our commit root and
* real root are the same, so we could change the contents of the blocks
* while caching. Instead do the slow caching in this case, and after
* the transaction has committed we will be safe.
*/
if (apfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
!(test_bit(APFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
ret = load_free_space_tree(caching_ctl);
else
ret = load_extent_tree_free(caching_ctl);
done:
spin_lock(&block_group->lock);
block_group->caching_ctl = NULL;
block_group->cached = ret ? APFS_CACHE_ERROR : APFS_CACHE_FINISHED;
spin_unlock(&block_group->lock);
#ifdef CONFIG_APFS_DEBUG
if (apfs_should_fragment_free_space(block_group)) {
u64 bytes_used;
spin_lock(&block_group->space_info->lock);
spin_lock(&block_group->lock);
bytes_used = block_group->length - block_group->used;
block_group->space_info->bytes_used += bytes_used >> 1;
spin_unlock(&block_group->lock);
spin_unlock(&block_group->space_info->lock);
fragment_free_space(block_group);
}
#endif
caching_ctl->progress = (u64)-1;
up_read(&fs_info->commit_root_sem);
apfs_free_excluded_extents(block_group);
mutex_unlock(&caching_ctl->mutex);
wake_up(&caching_ctl->wait);
apfs_put_caching_control(caching_ctl);
apfs_put_block_group(block_group);
}
int apfs_cache_block_group(struct apfs_block_group *cache, int load_cache_only)
{
DEFINE_WAIT(wait);
struct apfs_fs_info *fs_info = cache->fs_info;
struct apfs_caching_control *caching_ctl = NULL;
int ret = 0;
/* Allocator for zoned filesystems does not use the cache at all */
if (apfs_is_zoned(fs_info))
return 0;
caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
if (!caching_ctl)
return -ENOMEM;
INIT_LIST_HEAD(&caching_ctl->list);
mutex_init(&caching_ctl->mutex);
init_waitqueue_head(&caching_ctl->wait);
caching_ctl->block_group = cache;
caching_ctl->progress = cache->start;
refcount_set(&caching_ctl->count, 2);
apfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
spin_lock(&cache->lock);
if (cache->cached != APFS_CACHE_NO) {
kfree(caching_ctl);
caching_ctl = cache->caching_ctl;
if (caching_ctl)
refcount_inc(&caching_ctl->count);
spin_unlock(&cache->lock);
goto out;
}
WARN_ON(cache->caching_ctl);
cache->caching_ctl = caching_ctl;
if (apfs_test_opt(fs_info, SPACE_CACHE))
cache->cached = APFS_CACHE_FAST;
else
cache->cached = APFS_CACHE_STARTED;
cache->has_caching_ctl = 1;
spin_unlock(&cache->lock);
spin_lock(&fs_info->block_group_cache_lock);
refcount_inc(&caching_ctl->count);
list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
spin_unlock(&fs_info->block_group_cache_lock);
apfs_get_block_group(cache);
apfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
out:
if (load_cache_only && caching_ctl)
apfs_wait_space_cache_v1_finished(cache, caching_ctl);
if (caching_ctl)
apfs_put_caching_control(caching_ctl);
return ret;
}
static void clear_avail_alloc_bits(struct apfs_fs_info *fs_info, u64 flags)
{
u64 extra_flags = chunk_to_extended(flags) &
APFS_EXTENDED_PROFILE_MASK;
write_seqlock(&fs_info->profiles_lock);
if (flags & APFS_BLOCK_GROUP_DATA)
fs_info->avail_data_alloc_bits &= ~extra_flags;
if (flags & APFS_BLOCK_GROUP_METADATA)
fs_info->avail_metadata_alloc_bits &= ~extra_flags;
if (flags & APFS_BLOCK_GROUP_SYSTEM)
fs_info->avail_system_alloc_bits &= ~extra_flags;
write_sequnlock(&fs_info->profiles_lock);
}
/*
* Clear incompat bits for the following feature(s):
*
* - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
* in the whole filesystem
*
* - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
*/
static void clear_incompat_bg_bits(struct apfs_fs_info *fs_info, u64 flags)
{
bool found_raid56 = false;
bool found_raid1c34 = false;
if ((flags & APFS_BLOCK_GROUP_RAID56_MASK) ||
(flags & APFS_BLOCK_GROUP_RAID1C3) ||
(flags & APFS_BLOCK_GROUP_RAID1C4)) {
struct list_head *head = &fs_info->space_info;
struct apfs_space_info *sinfo;
list_for_each_entry_rcu(sinfo, head, list) {
down_read(&sinfo->groups_sem);
if (!list_empty(&sinfo->block_groups[APFS_RAID_RAID5]))
found_raid56 = true;
if (!list_empty(&sinfo->block_groups[APFS_RAID_RAID6]))
found_raid56 = true;
if (!list_empty(&sinfo->block_groups[APFS_RAID_RAID1C3]))
found_raid1c34 = true;
if (!list_empty(&sinfo->block_groups[APFS_RAID_RAID1C4]))
found_raid1c34 = true;
up_read(&sinfo->groups_sem);
}
if (!found_raid56)
apfs_clear_fs_incompat(fs_info, RAID56);
if (!found_raid1c34)
apfs_clear_fs_incompat(fs_info, RAID1C34);
}
}
static int remove_block_group_item(struct apfs_trans_handle *trans,
struct apfs_path *path,
struct apfs_block_group *block_group)
{
struct apfs_fs_info *fs_info = trans->fs_info;
struct apfs_root *root;
struct apfs_key key = {};
int ret;
root = fs_info->extent_root;
key.objectid = block_group->start;
key.type = APFS_BLOCK_GROUP_ITEM_KEY;
key.offset = block_group->length;
ret = apfs_search_slot(trans, root, &key, path, -1, 1);
if (ret > 0)
ret = -ENOENT;
if (ret < 0)
return ret;
ret = apfs_del_item(trans, root, path);
return ret;
}
int apfs_remove_block_group(struct apfs_trans_handle *trans,
u64 group_start, struct extent_map *em)
{
struct apfs_fs_info *fs_info = trans->fs_info;
struct apfs_path *path;
struct apfs_block_group *block_group;
struct apfs_free_cluster *cluster;
struct inode *inode;
struct kobject *kobj = NULL;
int ret;
int index;
int factor;
struct apfs_caching_control *caching_ctl = NULL;
bool remove_em;
bool remove_rsv = false;
block_group = apfs_lookup_block_group(fs_info, group_start);
BUG_ON(!block_group);
BUG_ON(!block_group->ro);
trace_apfs_remove_block_group(block_group);
/*
* Free the reserved super bytes from this block group before
* remove it.
*/
apfs_free_excluded_extents(block_group);
apfs_free_ref_tree_range(fs_info, block_group->start,
block_group->length);
index = apfs_bg_flags_to_raid_index(block_group->flags);
factor = apfs_bg_type_to_factor(block_group->flags);
/* make sure this block group isn't part of an allocation cluster */
cluster = &fs_info->data_alloc_cluster;
spin_lock(&cluster->refill_lock);
apfs_return_cluster_to_free_space(block_group, cluster);
spin_unlock(&cluster->refill_lock);
/*
* make sure this block group isn't part of a metadata
* allocation cluster
*/
cluster = &fs_info->meta_alloc_cluster;
spin_lock(&cluster->refill_lock);
apfs_return_cluster_to_free_space(block_group, cluster);
spin_unlock(&cluster->refill_lock);
apfs_clear_treelog_bg(block_group);
path = apfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
/*
* get the inode first so any iput calls done for the io_list
* aren't the final iput (no unlinks allowed now)
*/
inode = lookup_free_space_inode(block_group, path);
mutex_lock(&trans->transaction->cache_write_mutex);
/*
* Make sure our free space cache IO is done before removing the
* free space inode
*/
spin_lock(&trans->transaction->dirty_bgs_lock);
if (!list_empty(&block_group->io_list)) {
list_del_init(&block_group->io_list);
WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
spin_unlock(&trans->transaction->dirty_bgs_lock);
apfs_wait_cache_io(trans, block_group, path);
apfs_put_block_group(block_group);
spin_lock(&trans->transaction->dirty_bgs_lock);
}
if (!list_empty(&block_group->dirty_list)) {
list_del_init(&block_group->dirty_list);
remove_rsv = true;
apfs_put_block_group(block_group);
}
spin_unlock(&trans->transaction->dirty_bgs_lock);
mutex_unlock(&trans->transaction->cache_write_mutex);
ret = apfs_remove_free_space_inode(trans, inode, block_group);
if (ret)
goto out;
spin_lock(&fs_info->block_group_cache_lock);
rb_erase(&block_group->cache_node,
&fs_info->block_group_cache_tree);
RB_CLEAR_NODE(&block_group->cache_node);
/* Once for the block groups rbtree */
apfs_put_block_group(block_group);
if (fs_info->first_logical_byte == block_group->start)
fs_info->first_logical_byte = (u64)-1;
spin_unlock(&fs_info->block_group_cache_lock);
down_write(&block_group->space_info->groups_sem);
/*
* we must use list_del_init so people can check to see if they
* are still on the list after taking the semaphore
*/
list_del_init(&block_group->list);
if (list_empty(&block_group->space_info->block_groups[index])) {
kobj = block_group->space_info->block_group_kobjs[index];
block_group->space_info->block_group_kobjs[index] = NULL;
clear_avail_alloc_bits(fs_info, block_group->flags);
}
up_write(&block_group->space_info->groups_sem);
clear_incompat_bg_bits(fs_info, block_group->flags);
if (kobj) {
kobject_del(kobj);
kobject_put(kobj);
}
if (block_group->has_caching_ctl)
caching_ctl = apfs_get_caching_control(block_group);
if (block_group->cached == APFS_CACHE_STARTED)
apfs_wait_block_group_cache_done(block_group);
if (block_group->has_caching_ctl) {
spin_lock(&fs_info->block_group_cache_lock);
if (!caching_ctl) {
struct apfs_caching_control *ctl;
list_for_each_entry(ctl,
&fs_info->caching_block_groups, list)
if (ctl->block_group == block_group) {
caching_ctl = ctl;
refcount_inc(&caching_ctl->count);
break;
}
}
if (caching_ctl)
list_del_init(&caching_ctl->list);
spin_unlock(&fs_info->block_group_cache_lock);
if (caching_ctl) {
/* Once for the caching bgs list and once for us. */
apfs_put_caching_control(caching_ctl);