forked from atomistic-machine-learning/schnetpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
44 lines (39 loc) · 1.26 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import os
import io
from setuptools import setup, find_packages
def read(fname):
with io.open(os.path.join(os.path.dirname(__file__), fname), encoding="utf-8") as f:
return f.read()
setup(
name="schnetpack",
version="0.3.1",
author="Kristof T. Schuett, Michael Gastegger, Pan Kessel, Kim Nicoli",
email="[email protected]",
url="https://github.com/atomistic-machine-learning/schnetpack",
packages=find_packages("src"),
scripts=[
"src/scripts/spk_ase.py",
"src/scripts/spk_load.py",
"src/scripts/spk_md.py",
"src/scripts/spk_parse.py",
"src/scripts/spk_run.py",
],
package_dir={"": "src"},
python_requires=">=3.6",
install_requires=[
"torch>=1.1",
"numpy",
"ase>=3.18",
"h5py",
"tensorboardX",
"tqdm",
"pyyaml",
],
extras_require={"test": ["pytest", "sacred", "pytest-console-scripts"]},
license="MIT",
description="SchNetPack - Deep Neural Networks for Atomistic Systems",
long_description="""
SchNetPack aims to provide accessible atomistic neural networks that can be
trained and applied out-of-the-box, while still being extensible to custom
atomistic architectures""",
)