-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexemplars.py
55 lines (47 loc) · 1.96 KB
/
exemplars.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import numpy as np
import torch
MEMORY = 2000.
class Exemplars:
def __init__(self, network, device):
self.network = network
self.device = device
self.exemplar_sets = []
self.exemplar_valid_sets = []
def get_exemplar_samples(self, train=True):
if not train:
ex_set = self.exemplar_valid_sets
else:
ex_set = self.exemplar_sets
return [exemplar for exemplar_list in ex_set for exemplar in exemplar_list]
# STORE IN MEMORY THE ACTUAL IMAGES FOR EXEMPLARS
def construct_exemplar_set(self, loader, m, converted, type='train'):
"""Construct an exemplar set for image set
Args:
images: np.array containing images of a class
"""
self.network.eval()
vals = []
exemplar = []
added = 0
for idx, (inputs, targets) in enumerate(loader):
# compute distances for each image in order to find the closest to the mean
inputs = inputs.to(self.device)
outputs, _ = self.network(inputs)
_, _, distances = self.network.predict(outputs)
val = distances.detach().to('cpu').numpy()[:, converted]
vals = vals + val.tolist()
# select the topk images that will become exemplars
minimals = torch.from_numpy(np.array(vals))
_, idxs = torch.topk(minimals, k=int(m), largest=False)
for i in idxs:
exemplar.append(loader.dataset.samples[i])
if type == 'train':
self.exemplar_sets.append(exemplar)
else:
self.exemplar_valid_sets.append(exemplar)
def reduce_exemplar_sets(self, exemplar_m, valid_m=None):
for i in range(len(self.exemplar_sets)):
self.exemplar_sets[i] = self.exemplar_sets[i][:int(exemplar_m)]
if valid_m is not None:
for i in range(len(self.exemplar_valid_sets)):
self.exemplar_valid_sets[i] = self.exemplar_valid_sets[i][:int(valid_m)]