-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun.py
333 lines (264 loc) · 13.4 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import utils
import argparser
import os
from utils.logger import Logger
from dataset.utils import round2nearest_multiple
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data.distributed import DistributedSampler
import numpy as np
import random
import torch
from torch.utils import data
from torch import distributed
from dataset import StreetHazardsSegmentation
from dataset import transform
from metrics import StreamSegMetrics
from segmentation_module import make_model
from train import Trainer
def save_ckpt(path, model, trainer, optimizer, scheduler, epoch, best_score):
""" save current model
"""
state = {
"epoch": epoch,
"model_state": model.state_dict(),
"optimizer_state": optimizer.state_dict(),
"scheduler_state": scheduler.state_dict(),
"best_score": best_score,
"trainer_state": trainer.state_dict()
}
torch.save(state, path)
def get_dataset(opts):
""" Dataset And Augmentation
"""
resize_scales = [300 / 720, 375 / 720, 450 / 720, 525 / 720, 1000 / 1280]
# TRAIN
basic_transform = transform.Compose([
transform.ToTensor(),
transform.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
if opts.dataset == 'streethazards':
train_transform = transform.Compose([
transform.RandomScale([resize_scales[0], resize_scales[-1]]),
transform.RandomCrop(opts.crop_size, pad_if_needed=True), # 450
transform.RandomHorizontalFlip(),
basic_transform
])
else:
raise NotImplementedError(f"Transformations for /{opts.dataset}/ dataset not available")
# VALIDATION
val_transform = basic_transform
# TEST
heights = [int(720 * s) for s in resize_scales]
widhts = [int(1280 * s) for s in resize_scales]
widhts = round2nearest_multiple(widhts, 8)
heights = round2nearest_multiple(heights, 8)
if opts.multi_scala:
if opts.dataset == 'streethazards':
test_transform = []
for height, widht in zip(heights, widhts):
test_transform.append(transform.Compose([
transform.Resize((height, widht)),
basic_transform
]))
else:
raise NotImplementedError(f"Multi scale transformations for /{opts.dataset}/ dataset not available")
else:
if opts.dataset == 'streethazards':
test_transform = transform.Compose([
transform.Resize((heights[-1], widhts[-1])),
basic_transform
])
else:
raise NotImplementedError(f"Transformations for /{opts.dataset}/ dataset not available")
# DATATSET
if opts.dataset == 'streethazards':
train_dataset = StreetHazardsSegmentation
test_dataset = StreetHazardsSegmentation
else:
raise NotImplementedError(f"/{opts.dataset}/ dataset not available")
train_dst = train_dataset(root=opts.data_root, split='train', transform=train_transform,
basic_transform=basic_transform)
val_dst = train_dataset(root=opts.data_root, split='validation', transform=val_transform,
basic_transform=basic_transform)
test_dst = test_dataset(root=opts.data_root, split='test', transform=test_transform, basic_transform=basic_transform,
multiple_resizes_test=opts.multi_scala)
return train_dst, val_dst, test_dst
def main(opts):
distributed.init_process_group(backend='nccl', init_method='env://')
device_id, device = opts.local_rank, torch.device(opts.local_rank)
rank, world_size = distributed.get_rank(), distributed.get_world_size()
torch.cuda.set_device(device_id)
# Initialize logging
logdir_full = f"{opts.logdir}/{opts.dataset}/{opts.name}/"
if rank == 0:
logger = Logger(logdir_full, rank=rank, summary=opts.visualize)
else:
logger = Logger(logdir_full, rank=rank, summary=False)
logger.print(f"Device: {device}")
checkpoint_path = f"checkpoints/{opts.dataset}/{opts.name}.pth"
os.makedirs(f"checkpoints/{opts.dataset}", exist_ok=True)
# Set up random seed
torch.manual_seed(opts.random_seed)
torch.cuda.manual_seed(opts.random_seed)
np.random.seed(opts.random_seed)
random.seed(opts.random_seed)
train_dst, val_dst, test_dst = get_dataset(opts)
train_loader = data.DataLoader(train_dst, batch_size=opts.batch_size,
sampler=DistributedSampler(train_dst, num_replicas=world_size, rank=rank),
num_workers=opts.num_workers, drop_last=True)
val_loader = data.DataLoader(val_dst, batch_size=1,
sampler=DistributedSampler(val_dst, num_replicas=world_size, rank=rank),
num_workers=opts.num_workers, drop_last=True)
logger.info(f"Dataset: {opts.dataset}, Train set: {len(train_dst)}, Val set (w/o anomalies): {len(val_dst)},"
f" Test set (w/ anomalies): {len(test_dst)}, #training classes: {opts.num_classes}")
logger.info(f"Total batch size is {opts.batch_size * world_size}")
opts.n_gpus = world_size
# xxx Set up model
logger.info(f"Backbone: {opts.backbone}")
model = make_model(opts)
logger.info(f"[!] Model made with{'out' if opts.no_pretrained else ''} pre-trained")
# xxx Set up optimizer
params = []
params.append({"params": filter(lambda p: p.requires_grad, model.body.parameters()),
'weight_decay': opts.weight_decay})
params.append({"params": filter(lambda p: p.requires_grad, model.head.parameters()),
'weight_decay': opts.weight_decay})
params.append({"params": filter(lambda p: p.requires_grad, model.cls.parameters()),
'weight_decay': opts.weight_decay})
optimizer = torch.optim.SGD(params, lr=opts.lr, momentum=0.9, nesterov=True)
if opts.lr_policy == 'poly':
scheduler = utils.PolyLR(optimizer, max_iters=opts.epochs * len(train_loader), power=opts.lr_power)
elif opts.lr_policy == 'step':
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=opts.lr_decay_step, gamma=opts.lr_decay_factor)
else:
raise NotImplementedError
model = model.to(device)
# Put the model on GPU
model = DistributedDataParallel(model, device_ids=[opts.local_rank], output_device=opts.local_rank)
trainer = Trainer(model, device=device, opts=opts)
# xxx Handle checkpoint for current model (model old will always be as previous step or None)
best_score = 0.0
cur_epoch = 0
if opts.ckpt is not None:
ckpt_path = f"checkpoints/{opts.dataset}/{opts.ckpt}"
assert os.path.isfile(ckpt_path), "Error, ckpt not found. Check the correct directory"
checkpoint = torch.load(ckpt_path, map_location="cpu")
model.load_state_dict(checkpoint["model_state"], strict=False)
optimizer.load_state_dict(checkpoint["optimizer_state"])
scheduler.load_state_dict(checkpoint["scheduler_state"])
cur_epoch = checkpoint["epoch"] + 1
best_score = checkpoint['best_score']
logger.info("[!] Model restored from %s" % ckpt_path)
# if we want to resume training, resume trainer from checkpoint
if 'trainer_state' in checkpoint:
trainer.load_state_dict(checkpoint['trainer_state'])
del checkpoint
else:
logger.info("[!] Train from scratch")
# xxx Train procedure
# print opts before starting training to log all parameters
logger.add_table("Opts", vars(opts))
# For visualization -> select random batches to display on tensorboard
if rank == 0 and opts.sample_num > 0:
sample_ids = np.random.choice(len(val_loader), opts.sample_num, replace=False) # sample idxs for visualization
logger.info(f"The samples id are {sample_ids}")
else:
sample_ids = None
label2color = utils.Label2Color(cmap=utils.color_map(opts.dataset)) # convert labels t o images
denorm = utils.Denormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # de-normalization for original images
val_metrics = StreamSegMetrics(opts.num_classes, opts.unk_class)
val_score = None
results = {}
# check if random is equal here.
logger.print(torch.randint(0, 100, (1, 1)))
# train/val here
while cur_epoch < opts.epochs and not opts.test:
# ===== Train =====
model.train()
epoch_loss = trainer.train(cur_epoch=cur_epoch, optim=optimizer, train_loader=train_loader,
scheduler=scheduler, logger=logger)
logger.info(f"End of Epoch {cur_epoch}/{opts.epochs -1}, Class Loss={epoch_loss},")
# ===== Log metrics on Tensorboard =====
logger.add_scalar("E-Loss/E-Loss", epoch_loss, cur_epoch)
# ===== Validation =====
if (cur_epoch + 1) % opts.val_interval == 0:
logger.info("validate on val set...")
model.eval()
val_loss, val_score, ret_samples = trainer.validate(loader=val_loader, metrics=val_metrics,
logger=logger, ret_samples_ids=sample_ids)
logger.print("Done validation")
logger.info(f"End of Validation {cur_epoch}/{opts.epochs}, Validation Loss={val_loss}")
logger.info(val_metrics.to_str(val_score))
# ===== Log metrics on Tensorboard =====
# visualize validation score and samples
logger.add_scalar("V-Loss", val_loss, cur_epoch)
logger.add_scalar("Val_Overall_Acc", val_score['Overall Acc'], cur_epoch)
logger.add_scalar("Val_MeanIoU", val_score['Mean IoU'], cur_epoch)
logger.add_table("Val_Class_IoU", val_score['Class IoU'], cur_epoch)
logger.add_table("Val_Acc_IoU", val_score['Class Acc'], cur_epoch)
logger.add_figure("Val_Confusion_Matrix", val_score['Confusion Matrix'], cur_epoch)
for k, (img, target) in enumerate(ret_samples):
img = (denorm(img) * 255).astype(np.uint8)
target = label2color(target).transpose(2, 0, 1).astype(np.uint8)
concat_img = np.concatenate((img, target), axis=2) # concat along width
logger.add_image(f'Validation_sample_{k}', concat_img, cur_epoch)
# keep the metric to print them at the end of training
results["V-IoU"] = val_score['Class IoU']
results["V-Acc"] = val_score['Class Acc']
# ===== Save Model =====
if rank == 0: # save best model at the last iteration
score = val_score['Mean IoU'] if val_score is not None else 0. # use last score we have
# best model to build incremental steps
save_ckpt(checkpoint_path, model, trainer, optimizer, scheduler, cur_epoch, score)
logger.info("[!] Checkpoint saved.")
cur_epoch += 1
# ===== Save Best Model at the end of training =====
if rank == 0 and not opts.test: # save best model at the last iteration
# best model to build incremental steps
save_ckpt(checkpoint_path, model, trainer, optimizer, scheduler, cur_epoch, best_score)
logger.info("[!] Best model Checkpoint saved.")
torch.distributed.barrier()
# xxx From here starts the test code
logger.info("*** Test the model on all seen classes...")
# make data loader
test_loader = data.DataLoader(test_dst, batch_size=1,
sampler=DistributedSampler(test_dst, num_replicas=world_size, rank=rank),
num_workers=opts.num_workers, drop_last=True)
model = make_model(opts)
# Put the model on GPU
model = DistributedDataParallel(model.cuda(device), device_ids=[opts.local_rank], output_device=opts.local_rank)
if opts.ckpt_test is not None:
checkpoint_path = f"checkpoints/{opts.dataset}/{opts.ckpt_test}"
checkpoint = torch.load(checkpoint_path, map_location="cpu")
model.load_state_dict(checkpoint["model_state"])
logger.info(f"*** Model restored from {checkpoint_path}")
del checkpoint
trainer = Trainer(model, device=device, opts=opts)
model.eval()
val_score = trainer.test(loader=test_loader, metrics=val_metrics)
# ===== Log test results on Tensorboard =====
# visualize test score and samples
logger.print("Done test")
logger.info(f"*** End of Test")
logger.info(val_metrics.to_str(val_score))
logger.add_table("Test_Class_IoU", val_score['Class IoU'])
logger.add_table("Test_Class_Acc", val_score['Class Acc'])
logger.add_figure("Test_Confusion_Matrix", val_score['Confusion Matrix'])
# logger.add_figure("ROC Curve", val_score['ROC_Curve'])
results["T-IoU"] = val_score['Class IoU']
results["T-Acc"] = val_score['Class Acc']
logger.add_results(results)
logger.add_scalar("T_Overall_Acc", val_score['Overall Acc'])
logger.add_scalar("T_MeanIoU", val_score['Mean IoU'])
logger.add_scalar("T_MeanAcc", val_score['Mean Acc'])
logger.add_scalar("AUROC", val_score['AUROC'])
logger.add_scalar("AUPR", val_score['AUPR'])
logger.add_scalar("FPR95", val_score['FPR95'])
logger.close()
if __name__ == '__main__':
parser = argparser.get_argparser()
opts = parser.parse_args()
opts = argparser.modify_command_options(opts)
main(opts)