-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind_parameter_bounds.py
110 lines (88 loc) · 3.31 KB
/
find_parameter_bounds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pickle
from os import path, listdir
from simulation import F_full
dirname = 'failed_simulations'
fnames = [path.join(dirname, fname) for fname in listdir(dirname)]
lag_before_NaN = 5
# for fname in fnames:
# with open(fname, 'rb') as f:
# failed_sim = pickle.load(f)
# break
# plasticity_params = failed_sim['plasticity_params']
# num_points = 100
# max_val = 30.
# theta = np.ones((1,2)) * 20.
# W = np.array([[0., 1.],[1., 0.]])
# f_vals = np.zeros(num_points)
# for i, nu in enumerate(
# np.vstack([np.ones(num_points)*19, np.linspace(0, max_val, num_points)]).T
# ):
# nu = nu.reshape(-1,1)
# f_vals[i] = F_full.py_func(nu, W, theta, plasticity_params)[0, 1]
# plt.plot(f_vals)
# plt.show()
def get_nan_index(results_dict):
nan_index = None
for k, v in results_dict.items():
if k in ['times', 'theta', 'reward']: continue # theta starts with a nan
for arr in v:
if k in ['W', 'e']:
nan_mask = np.max(np.isnan(arr), axis=(0,1))
# print(k, nan_mask.shape, arr.shape)
else:
nan_mask = np.max(np.isnan(arr), axis=0)
# print(k, nan_mask.shape, arr.shape)
if nan_mask.max():
this_nan_index = np.arange(nan_mask.shape[0])[nan_mask].min()
if nan_index is None:
nan_index = this_nan_index
elif this_nan_index < nan_index:
nan_index = this_nan_index
return nan_index
variable = 'W'
vars_before_nan = []
for fname in fnames:
with open(fname, 'rb') as f:
failed_sim = pickle.load(f)
results_dict = failed_sim['results_dict']
nan_index = get_nan_index(results_dict)
var_arrays = results_dict[variable]
final_var_array = var_arrays[-1]
idx = nan_index-lag_before_NaN
if idx > 0:
# weights_before_nan.append(final_weights_array[:,:,idx])
if variable in ['W', 'e', 'theta']:
vars_before_nan.append(final_var_array[:,:,idx])
# if variable == 'reward':
# print(np.shape(final_var_array))
# vars_before_nan.append(final_var_array[:, idx])
else:
vars_before_nan.append(final_var_array[:,idx])
elif len(var_arrays) > 1:
# weights_before_nan.append(weights_arrays[-2][:,:,idx])
if variable in ['W', 'e', 'theta']:
vars_before_nan.append(var_arrays[-2][:,:,idx])
# if variable == 'reward':
# vars_before_nan.append(var_arrays[-2][idx])
else:
vars_before_nan.append(var_arrays[-2][:,idx])
if variable == 'reward':
r_arr = np.array(vars_before_nan)
# print(np.abs(r_arr).max())
plt.hist(
r_arr, bins=max(10, int(r_arr.shape[0]/5)),
# density=True
)
elif variable == 'W':
small_counts = [np.sum((x.ravel() < 0.1).astype(int)) for x in vars_before_nan]
big_counts = [np.sum((x.ravel() > 3.4).astype(int)) for x in vars_before_nan]
plt.scatter(small_counts, big_counts)
else:
per_unit_final_values = list(zip(*[x.ravel() for x in vars_before_nan]))
plt.violinplot(per_unit_final_values)
for i, values in enumerate(vars_before_nan):
plt.plot(values.ravel(), 'k', alpha=0.01)
plt.show()