-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_decision_making.py
232 lines (207 loc) · 7.52 KB
/
plot_decision_making.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#FIXME: doesn't seem to work right. Maybe parameters are off
# Either reverbratory activity is too strong or non-existent
from parameters_spiking import *
import brian2 as b2
from brian2 import np, plt
from datetime import datetime
from os import path, mkdir
script_running_datetime = str(datetime.now()).replace(' ', '_')
folder_name = '_'.join([__file__[:-3], script_running_datetime])
folder_prefix = path.join(path.join('experiments', folder_name))
imagedir = path.join(folder_prefix, 'images_and_animations')
paramsdir = path.join(folder_prefix, 'parameters')
paramsfile = path.join(paramsdir, 'experiment_parameters.json')
namespacefile = path.join(paramsdir, 'experiment_namespace.json')
def run_model(
N=N, p=p, f=f, N_E=N_E, N_I=N_I, w_plus=w_plus, w_minus=w_minus,
N_sub=N_sub, N_non=N_non, C_ext=C_ext, C_E=C_E, C_I=C_I,
namespace=namespace, net=None,
use_conductance=True,
coherence=0.2,
stim_on=100*b2.ms, stim_off=900*b2.ms,
runtime=2*b2.second,
**namespace_kwargs # use for repeated simulations?
):
if net is None:
b2.start_scope()
s_AMPA_initial_ext = namespace['rate_ext'] * C_ext * namespace['tau_AMPA']
# update namespace with computed variables
namespace['tau_m_E'] = namespace['C_m_E'] / namespace['g_m_E']
namespace['tau_m_I'] = namespace['C_m_I'] / namespace['g_m_I']
P_E = b2.NeuronGroup(
N_E,
eqs_conductance_E if use_conductance else eqs_current_E,
threshold='v > V_thr',
reset='v = V_reset',
refractory='tau_rp_E',
method='euler',
name='P_E'
)
P_E.v = namespace['V_L']
P_E.s_AMPA_ext = s_AMPA_initial_ext # estimated 4.8
P_I = b2.NeuronGroup(
N_E,
eqs_conductance_I if use_conductance else eqs_current_I,
threshold='v > V_thr',
reset='v = V_reset',
refractory='tau_rp_I',
method='euler',
name='P_I'
)
P_I.v = namespace['V_L']
P_I.s_AMPA_ext = s_AMPA_initial_ext
C_E_E = b2.Synapses(
P_E, P_E,
model=eqs_glut, # equations for NMDA
on_pre=eqs_pre_glut,
on_post=eqs_post_glut,
method='euler',
name='C_E_E'
)
C_E_E.connect('i != j')
C_E_E.w[:] = 1.0
for pi in range(N_non, N_non+p*N_sub, N_sub):
# internal other subpopulation to current nonselective
# brian synapses are i->j
C_E_E.w[C_E_E.indices[:, pi:pi+N_sub]] = w_minus
# internal current subpopulation to current subpopulation
C_E_E.w[C_E_E.indices[pi:pi + N_sub, pi:pi + N_sub]] = w_plus
C_E_I = b2.Synapses(
P_E, P_I,
model=eqs_glut,
on_pre=eqs_pre_glut,
on_post=eqs_post_glut,
method='euler',
name='C_E_I'
)
C_E_I.connect()
C_E_I.w[:] = 1.0
C_I_I = b2.Synapses(
P_I, P_I,
on_pre=eqs_pre_gaba,
method='euler',
name='C_I_I'
)
C_I_I.connect('i != j')
C_I_E = b2.Synapses(
P_I, P_E,
on_pre=eqs_pre_gaba,
method='euler',
name='C_I_E'
)
C_I_E.connect()
C_P_E = b2.PoissonInput(
P_E,
target_var='s_AMPA_ext',
N=C_ext,
rate=namespace['rate_ext'],
weight=1.
)
C_P_I = b2.PoissonInput(
P_I,
target_var='s_AMPA_ext',
N=C_ext,
rate=namespace['rate_ext'],
weight=1.
)
# TODO: change the stimulus to match the task
# C_selection = int(f * C_ext)
# rate_selection = 25. * b2.Hz
# if 'stimulus1' not in namespace:
# stimtimestep = 25 * b2.ms
# stimtime = 1
# stimuli1 = b2.TimedArray(np.r_[
# np.zeros(8), np.ones(stimtime), np.zeros(100)],
# dt=stimtimestep
# )
# namespace['stimuli1'] = stimuli1
# input1 = b2.PoissonInput(
# P_E[N_non:N_non + N_sub],
# target_var='s_AMPA_ext',
# N=C_selection,
# rate=rate_selection,
# weight='stimuli1(t)'
# )
N_input = C_ext
increment1 = 0.05*(1 + coherence) * namespace['rate_ext']
increment2 = 0.05*(1 - coherence) * namespace['rate_ext']
sigma_rate = 0.05 * namespace['rate_ext']
input1 = b2.PoissonGroup(
N_input, rates=0. * b2.Hz
)
input1_syn = b2.Synapses(
input1, P_E[N_non:N_non + N_sub],
model='',
on_pre='s_AMPA_ext_post += 1'
)
input1_syn.connect()
input2 = b2.PoissonGroup(
N_input, rates=0. * b2.Hz
)
input2_syn = b2.Synapses(
input2, P_E[N_non+N_sub:N_non + 2*N_sub],
model='',
on_pre='s_AMPA_ext_post += 1'
)
input2_syn.connect()
@b2.network_operation(dt=50*b2.ms, when='start')
def update_inputs(t):
if t < stim_on or t >= stim_off:
input1.rates = 0. * b2.Hz
input2.rates = 0. * b2.Hz
else:
input1.rates = (np.random.randn()*sigma_rate + increment1)
# input1.rates = increment1
input2.rates = (np.random.randn()*sigma_rate + increment2)
# input2.rates = increment2
# ri1 = b2.PopulationRateMonitor(input1_syn, name='ri1')
# ri2 = b2.PopulationRateMonitor(input2_syn, name='ri2')
r0 = b2.PopulationRateMonitor(P_E[:N_non], name='r0')
r1 = b2.PopulationRateMonitor(P_E[N_non:N_non + N_sub], name='r1')
r2 = b2.PopulationRateMonitor(P_E[N_non+N_sub:N_non + 2*N_sub], name='r2')
rI = b2.PopulationRateMonitor(P_I, name='rI')
net = b2.Network(b2.collect())
net.store('initialised')
net.restore('initialised')
net.run(
duration=runtime,
report='stdout',
namespace=namespace
)
return net
if __name__ == '__main__':
net = None
N_traces = 5
conv_width = 10*b2.ms
leaveout_steps = int(conv_width/b2.defaultclock.dt)
# leaveout_steps = 10
b2.figure()
for trace in range(N_traces):
net = run_model(net=net)
r1 = net['r1']
r2 = net['r2']
r0 = net['r0']
rI = net['rI']
# ri1 = net['ri1']
# ri2 = net['ri2']
b2.plot(
r1.smooth_rate(width=conv_width)[:-leaveout_steps]/b2.Hz,
r2.smooth_rate(width=conv_width)[:-leaveout_steps]/b2.Hz
)
ymin, ymax = b2.ylim()
xmin, xmax = b2.xlim()
b2.ylim([min(xmin, ymin), max(xmax, ymax)])
b2.xlim([min(xmin, ymin), max(xmax, ymax)])
b2.figure()
b2.plot(r1.t[:-leaveout_steps]/b2.ms,
r1.smooth_rate(width=conv_width)[:-leaveout_steps]/b2.Hz, label='1')
b2.plot(r2.t[:-leaveout_steps]/b2.ms,
r2.smooth_rate(width=conv_width)[:-leaveout_steps]/b2.Hz, label='2')
b2.plot(r0.t[:-leaveout_steps]/b2.ms,
r0.smooth_rate(width=conv_width)[:-leaveout_steps]/b2.Hz, label='0')
b2.plot(rI.t[:-leaveout_steps]/b2.ms,
rI.smooth_rate(width=conv_width)[:-leaveout_steps]/b2.Hz, label='I')
# b2.plot(ri1.t/b2.ms, ri1.smooth_rate(width=10*b2.ms)/b2.Hz, label='i1')
# b2.plot(ri2.t/b2.ms, ri2.smooth_rate(width=10*b2.ms)/b2.Hz, label='i2')
b2.legend(title='pop.')
b2.show()