-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_evolution_crosssection.py
52 lines (46 loc) · 1.85 KB
/
plot_evolution_crosssection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import numpy as np
import matplotlib.pyplot as plt
lr_samples_fname = 'experiments/plot_top_candidates_2021-02-28_19:12:06.488464/samples/samples.npy'
lr_coherences_fname = 'experiments/plot_top_candidates_2021-02-28_19:12:06.488464/samples/coherences.npy'
lr_meanstd_fname = 'run_evolution_crosssection_meanstd.npy'
lr_coherence_fname = 'run_evolution_crosssection_coherence.npy'
w_meanstd_fname = 'find_optimal_weights_crosssection_meanstd.npy'
w_coherence_fname = 'find_optimal_weights_crosssection_coherence.npy'
if __name__ == '__main__':
lr_meanstd = np.load(lr_meanstd_fname)
lr_coherences = np.load(lr_coherence_fname)
w_meanstd = np.load(w_meanstd_fname) * 10
w_coherences = np.load(w_coherence_fname)
fitness_samples = np.load(lr_samples_fname)
sample_coherences = np.load(lr_coherences_fname)
plt.figure(figsize=(8, 5))
plt.errorbar(
w_coherences, w_meanstd[:, 0], w_meanstd[:, 1],
color='darkorange', linestyle='--', alpha=0.9,
label='pop. avg. weights'
)
plt.errorbar(
lr_coherences, lr_meanstd[:, 0], lr_meanstd[:, 1],
color='gray', label='pop. avg. plasticity'
)
for i, c in enumerate(sample_coherences):
x_vals = np.full_like(fitness_samples[i,:], c)
label = None
if i == 0:
label = 'sampled performance'
plt.plot(
x_vals,
fitness_samples[i,:], 'k.',
label=label,
markersize=4.,
alpha=0.2
)
plt.legend()
plt.xticks(sample_coherences, rotation=45)
plt.xlabel('coherence')
plt.ylabel('fitness (number of correct trials out of 100)')
plt.title("Performances of Best Individuals and Generations")
plt.grid(ls=':', alpha=0.2)
plt.tight_layout()
plt.savefig('images_and_animations/weight_lr_fitnesses_together.png')
plt.show()