-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_fitnesses.py
206 lines (193 loc) · 8.57 KB
/
plot_fitnesses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from os import path, listdir
import json
import matplotlib.pyplot as plt
import numpy as np
import argparse
colours = plt.rcParams['axes.prop_cycle'].by_key()['color']
parser = argparse.ArgumentParser()
parser.add_argument('-w', '--weights', action='store_true')
parser.add_argument('--maxwplus', type=float, default=1.5)
parser.add_argument('--alpha', type=float, default=0.3)
parser.add_argument('--varalpha', action='store_true')
parser.add_argument('--noweightfilter', action='store_true')
parser.add_argument('-m', '--mingen', type=int, default=30)
parser.add_argument('-t', '--truncate', type=int, default=40)
parser.add_argument('-s', '--scaleup', action='store_true')
parser.add_argument('-l', '--labelsigma', action='store_true')
parser.add_argument('--stdwidth', type=float, default=1.)
parser.add_argument('-p', type=int, default=2)
parser.add_argument('--noshow', action='store_true')
args = parser.parse_args()
#TODO: put helper functions in a separate file
def get_checkpoint_and_params(experiment_fname):
lr_evolution_base = path.join(path.curdir, 'experiments')
lr_evolution_prefix = path.join(lr_evolution_base, experiment_fname)
lr_evolution_checkpoints = path.join(lr_evolution_prefix, 'checkpoints')
lr_evolution_parameters = path.join(lr_evolution_prefix, 'parameters')
if not path.exists(lr_evolution_checkpoints) or not path.exists(lr_evolution_parameters):
return None
lr_checkpoints_fnames = sorted(
[path.join(lr_evolution_checkpoints, x) for x in listdir(lr_evolution_checkpoints)],
key=path.getmtime)
if len(lr_checkpoints_fnames) == 0:
print(
"No checkpoints found in folder for experiment: ",
experiment_fname)
return None
for i, json_fname in enumerate(reversed(lr_checkpoints_fnames)):
try:
with open(json_fname, 'r') as f:
checkpoint = json.load(f)
break
except json.JSONDecodeError:
print(f"JSON decode error on: {experiment_fname} - {json_fname}")
if i == len(lr_checkpoints_fnames) - 1:
return None
# with open(lr_checkpoints_fnames[-1], 'r') as f:
# return None
with open(path.join(
lr_evolution_parameters,
listdir(lr_evolution_parameters)[0]), 'r') as f:
params = json.load(f)
return checkpoint, params
# def plot_fitness_curve(experiment_fname, ax=None):
# checkpoint, params = get_checkpoint_and_params(experiment_fname)
def plot_fitness_curve(
checkpoint, params,
ax=None, multiplier=1.,
label_sigma=False,
alpha_full=0.3,
variable_alpha=True,
stdwidth=1.,
colour=None
):
coherence = params['input_args']['coherence']
fitness_avg = np.array(checkpoint['fitness_avg']) * multiplier
fitness_std = np.array(checkpoint['fitness_std']) * multiplier
generations = np.arange(fitness_avg.shape[0])
if ax is None:
ax = plt.gca()
line_label = f'{coherence:.2f}'
if label_sigma:
sigma = params['input_args']['sigma']
line_label += f' | {sigma:.2f}'
l1 = ax.plot(
generations,
fitness_avg,
label=line_label,
color=colour
)
if not variable_alpha:
l2 = ax.fill_between(
generations,
fitness_avg-stdwidth*fitness_std,
fitness_avg+stdwidth*fitness_std,
alpha=alpha_full,
color=l1[0].get_color(),
)
else:
for g in range(generations.shape[0]):
alpha_here = alpha_full * np.sqrt(10/(1+np.mean(fitness_std[g:g+2])))
if args.weights and not args.scaleup:
alpha_here = alpha_here / np.sqrt(10)
l2 = ax.fill_between(
generations[g:g+2],
fitness_avg[g:g+2]-stdwidth*fitness_std[g:g+2],
fitness_avg[g:g+2]+stdwidth*fitness_std[g:g+2],
alpha=alpha_here,
color=l1[0].get_color(),
edgecolor="none"
)
return ax
if __name__ == '__main__':
min_generations = args.mingen # filter out short experiments
truncate_plot = args.truncate # truncate long experiments
multiplier = 1.
if args.weights:
experiment_type = 'find_optimal_weights'
if args.scaleup:
multiplier = 10.
else:
experiment_type = 'run_evolution'
plt.figure(figsize=(8, 5))
experiments = [x for x in listdir('experiments') if x.startswith(experiment_type)]
checks_and_params = [get_checkpoint_and_params(x) for x in experiments]
checks_and_params = [x for x in checks_and_params if x is not None]
checks_and_params = sorted(
checks_and_params,
key=lambda x: x[1]['input_args']['coherence'],
reverse=True
)
# checks_and_params_filtered = []
best_per_coherence = {}
best_scores_per_coherence = {}
best_mean_std_per_coherence = {}
for checkpoint, params in checks_and_params:
num_generations = np.array(checkpoint['fitness_avg']).shape[0]
p = params['p']
w_plus = params['input_args'].get('w_plus', 1.0) # default untrained
start_trained = params['input_args']['start_trained']
if num_generations >= min_generations and p == args.p \
and (w_plus <= args.maxwplus or args.noweightfilter) and not start_trained:
# first_hof_member = checkpoint['halloffame'][0]
# first_hof_entries.append(first_hof_member)
fitness_avg = np.array(checkpoint['fitness_avg']) * multiplier
fitness_std = np.array(checkpoint['fitness_std']) * multiplier
# fitness_index = np.argmax(fitness_avg-fitness_std)
best_fitness = np.max(fitness_avg-fitness_std)
best_fitness_idx = np.argmax(fitness_avg-fitness_std)
coherence = params['input_args']['coherence']
if coherence not in best_scores_per_coherence:
best_per_coherence[coherence] = (checkpoint, params)
best_scores_per_coherence[coherence] = best_fitness
best_mean_std_per_coherence[coherence] = [[
fitness_avg[best_fitness_idx],
fitness_std[best_fitness_idx]]]
elif best_fitness > best_scores_per_coherence[coherence]:
best_per_coherence[coherence] = (checkpoint, params)
best_scores_per_coherence[coherence] = best_fitness
best_mean_std_per_coherence[coherence] = [[
fitness_avg[best_fitness_idx],
fitness_std[best_fitness_idx]]]
# fitness_indices.append(fitness_index)
# best_fitnesses.append(fitness_avg[fitness_index])
# best_fitness_std.append(fitness_std[fitness_index])
# checks_and_params_filtered.append( (checkpoint, params) )
# save for convenience
coherences = np.array(sorted(best_mean_std_per_coherence.keys()))
best_means_stds_array = np.empty((len(coherences), 2))
for i, c in enumerate(coherences):
best_means_stds_array[i, :] = np.array(best_mean_std_per_coherence[c])
np.save(experiment_type+'_crosssection_meanstd.npy', best_means_stds_array)
np.save(experiment_type+'_crosssection_coherence.npy', coherences)
checks_and_params_filtered = list(best_per_coherence.values())
for i, (checkpoint, params) in enumerate(checks_and_params_filtered):
# colour = cmap(i/len(checks_and_params_filtered))
plot_fitness_curve(
checkpoint, params,
multiplier=multiplier,
label_sigma=args.labelsigma,
alpha_full=args.alpha,
variable_alpha=args.varalpha,
stdwidth=args.stdwidth,
# match up colours for different coherences
colour=colours[(i+4) % len(colours) if args.weights else i %len(colours)]
)
plt.grid(ls=':', alpha=.5)
legend_title = title='coherence'
if args.labelsigma:
legend_title += ' | sigma'
plt.legend(title=legend_title, loc='best', ncol=2)
plt.xlim(0, truncate_plot)
title = "Performance of Evolved Synaptic Weights" if args.weights else "Performance of Evolved Learning Rules"
if args.weights and args.scaleup:
title += '\nscaled to fitness out of 100'
plt.title(title)
# plt.hlines(10. if args.weights else 100., 0., 50., ls='--', color='k')
plt.axhline(10. if args.weights and not args.scaleup else 100., ls='--', color='k')
plt.ylabel("Fitness")
plt.xlabel("Generation")
fname = 'weights_fitnesses.png' if args.weights else 'learning_rules_fitnesses.png'
plt.savefig(path.join('images_and_animations', fname))
if not args.noshow:
plt.show()