forked from open-mmlab/mmtracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsiamese_rpn_r50_20e_otb100.py
73 lines (70 loc) · 2.36 KB
/
siamese_rpn_r50_20e_otb100.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
_base_ = ['./siamese_rpn_r50_20e_lasot.py']
crop_size = 511
exemplar_size = 127
search_size = 255
# model settings
model = dict(
test_cfg=dict(rpn=dict(penalty_k=0.4, window_influence=0.5, lr=0.4)))
data_root = 'data/'
train_pipeline = [
dict(
type='PairSampling',
frame_range=100,
pos_prob=0.8,
filter_template_img=False),
dict(type='LoadMultiImagesFromFile', to_float32=True),
dict(type='SeqLoadAnnotations', with_bbox=True, with_label=False),
dict(
type='SeqCropLikeSiamFC',
context_amount=0.5,
exemplar_size=exemplar_size,
crop_size=crop_size),
dict(type='SeqGrayAug', prob=0.2),
dict(
type='SeqShiftScaleAug',
target_size=[exemplar_size, search_size],
shift=[4, 64],
scale=[0.05, 0.18]),
dict(type='SeqColorAug', prob=[1.0, 1.0]),
dict(type='SeqBlurAug', prob=[0.0, 0.2]),
dict(type='VideoCollect', keys=['img', 'gt_bboxes', 'is_positive_pairs']),
dict(type='ConcatSameTypeFrames'),
dict(type='SeqDefaultFormatBundle', ref_prefix='search')
]
# dataset settings
data = dict(
samples_per_gpu=16,
train=dict(dataset_cfgs=[
dict(
type='SOTImageNetVIDDataset',
ann_file=data_root + 'ILSVRC/annotations/imagenet_vid_train.json',
img_prefix=data_root + 'ILSVRC/Data/VID',
pipeline=train_pipeline,
split='train',
test_mode=False),
dict(
type='SOTCocoDataset',
ann_file=data_root + 'coco/annotations/instances_train2017.json',
img_prefix=data_root + 'coco/train2017',
pipeline=train_pipeline,
split='train',
test_mode=False),
dict(
type='SOTCocoDataset',
ann_file=data_root +
'ILSVRC/annotations/imagenet_det_30plus1cls.json',
img_prefix=data_root + 'ILSVRC/Data/DET',
pipeline=train_pipeline,
split='train',
test_mode=False)
]),
val=dict(
type='OTB100Dataset',
ann_file=data_root + 'otb100/annotations/otb100_infos.txt',
img_prefix=data_root + 'otb100',
only_eval_visible=False),
test=dict(
type='OTB100Dataset',
ann_file=data_root + 'otb100/annotations/otb100_infos.txt',
img_prefix=data_root + 'otb100',
only_eval_visible=False))