This repository has been archived by the owner on Mar 22, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathsetup.py
54 lines (47 loc) · 1.93 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#!/usr/bin/env python
import os
from setuptools import (find_packages, setup)
here = os.path.abspath(os.path.dirname(__file__))
# To update the package version number, edit DeepRank-GNN/__version__.py
version = {}
with open(os.path.join(here, 'deeprank_gnn', '__version__.py')) as f:
exec(f.read(), version)
with open('README.md') as readme_file:
readme = readme_file.read()
setup(
name='DeepRank-GNN',
version=version['__version__'],
description='Graph Neural network Scoring of protein-protein conformations',
long_description=readme + '\n\n',
long_description_content_type='text/markdown',
author=["Nicolas Renaud", "Manon Reau"],
author_email='[email protected]',
url='https://github.com/DeepRank/DeepRank-GNN',
packages=find_packages(),
package_dir={'deeprank_gnn': 'deeprank_gnn'},
include_package_data=True,
license="Apache Software License 2.0",
zip_safe=False,
keywords='deeprank_gnn',
classifiers=[
'Development Status :: 2 - Pre-Alpha',
'Intended Audience :: Developers',
'License :: OSI Approved :: Apache Software License',
'Natural Language :: English', 'Programming Language :: Python :: 3.7',
'Topic :: Scientific/Engineering :: Chemistry'
],
test_suite='tests',
# not sure if the install of torch-geometric will work ..
install_requires=[
'numpy >= 1.13', 'scipy', 'h5py', 'torch>=1.5.0', 'networkx', 'matplotlib',
'pdb2sql', 'sklearn', 'chart-studio', 'BioPython', 'python-louvain',
'markov-clustering', 'torch-sparse', 'torch-scatter', 'torch-cluster',
'torch-spline-conv', 'torch-geometric', 'tqdm', 'freesasa'
],
extras_require={
'dev': ['prospector[with_pyroma]', 'yapf', 'isort'],
'doc': ['recommonmark', 'sphinx', 'sphinx_rtd_theme'],
'test':
['coverage', 'pycodestyle', 'pytest',
'pytest-cov', 'pytest-runner', 'coveralls'],
})