-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathextract_keywords.py
269 lines (224 loc) · 9.66 KB
/
extract_keywords.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import time, hashlib, re
from collections import defaultdict
from Utils.string_utils import collapse_spaces
from Utils.file_utils import find_files, load_stop_words
def compute_ngrams(tokens, max_len = None, min_len = 1):
"""
tokens : iterable of string
a single sentence of tokens. Assumes start and stop tokens omitted
max_len : int
maximum ngram length
min_len : int
minimum ngram length
"""
if max_len == None:
max_len = len(tokens)
if min_len > max_len:
raise Exception("min_len cannot be more than max_len")
ngrams = set()
# unigrams
for ngram_size in range(min_len, max_len + 1):
for start in range(0, len(tokens) - ngram_size + 1):
end = start + ngram_size -1
words = []
for i in range(start, end + 1):
words.append(tokens[i])
ngrams.add(tuple(words)) # make a tuple so hashable
return ngrams
# we may want to keep some non-alpha characters, such as # in C# and + in C++, etc.
re1 = re.compile("[;:\'\"\*/\),\(\-\|\s]+")
def remove_punct(s):
s = s.replace("'s"," ")
return collapse_spaces(re1.sub(" ",s).strip())
def hash_string(s):
hash_object = hashlib.md5(b'%s' % s)
return str(hash_object.hexdigest())
# recursive algorithm to eliminate shorter phrases with same or similar Doc Freq as longer phrases
def find_sub_phrases_to_remove(tpl_phrase, valid_phrases, doc_freq, to_rem):
if len(tpl_phrase) <= 1:
return
phrase_df = doc_freq[tpl_phrase]
ngrams = compute_ngrams(tpl_phrase, len(tpl_phrase)-1, 1)
for tpl_ngram in ngrams:
if tpl_ngram in valid_phrases and tpl_ngram not in to_rem:
sub_phr_df = doc_freq[tpl_ngram]
# if sub_phrase_df is close to the same frequency
if phrase_df >= (0.9 * sub_phr_df):
to_rem.add(tpl_ngram)
#to_rem_dbg.add((tpl_phrase, tpl_ngram, phrase_df, sub_phr_df))
find_sub_phrases_to_remove(tpl_ngram, valid_phrases, doc_freq, to_rem)
""" Extract Phrases """
import sys
from Config.extract_keywords_config import ExtractKeywordsConfig
if len(sys.argv) != 2:
raise Exception("Incorrect number of arguments passed - one expected, the config file name")
#sys.argv[0] is this script file, sys.argv[1] should be the config file
config = ExtractKeywordsConfig(sys.argv[1])
script_start = time.time()
if config.stop_words_file:
stop_words = load_stop_words(config.stop_words_file)
print("%i stop words loaded" % len(stop_words))
else:
stop_words = set()
""" Load Documents """
start = time.time()
files = find_files(config.processed_documents_folder, config.file_mask, True)
print("%s files found in %s" % (len(files), config.processed_documents_folder))
documents = []
for i, fname in enumerate(files):
with open(fname) as f:
contents = f.read()
documents.append(contents.split("\n"))
end = time.time()
print("Loading %i documents took %s seconds" % (len(files), str(end - start)))
""" Extract Common Terms and Phrases """
start = time.time()
#Or use a counter here.
doc_freq = defaultdict(int)
# remove short docs
tokenized_docs = []
sent_id = 0
sent_ids = set()
lens = []
hashed = set()
""" Find single word keywords """
for doc in documents:
un_tokens = set()
tok_sents = []
for sent in doc:
cl_sent = remove_punct(sent.lower())
hash_sent = hash_string(cl_sent)
# remove dupe sentences (not - will hurt df accuracy a little)
if hash_sent in hashed:
continue
hashed.add(hash_sent)
tokens = tuple(cl_sent.split(" "))
lens.append(len(tokens))
sent_id += 1
tok_sents.append((sent_id, tokens))
sent_ids.add(sent_id)
# create inverted index and unique tokens (for doc freq calc)
proc_tokens = set()
for tok in tokens:
if not tok in proc_tokens:
proc_tokens.add(tok)
if not tok in un_tokens:
un_tokens.add(tok)
doc_freq[tok] += 1
if len(tok_sents) > 0:
tokenized_docs.append(tok_sents)
end = time.time()
print("Extracting Keywords from %i documents took %i secs" % (len(tokenized_docs), end-start))
# Get really frequent items for removal
num_docs = float(len(tokenized_docs))
above_threshold = [k for k,v in doc_freq.items() if v >= config.min_document_frequency]
# remove really frequent terms (in 50% or more of documents)
too_freq = set([k for k in above_threshold if (doc_freq[k]/num_docs) >= config.max_proportion_documents])
freq_terms = [k for k in above_threshold
if k not in stop_words and
k not in too_freq]
print("%s frequent terms identified for building phrases" % len(freq_terms))
""" Find Phrases """
import time
start = time.time()
# Find all phrases up to length MAX_PHRASE_LEN at or above the defined MIN_DOC_FREQ above
phrase_doc_freq = defaultdict(int)
for term in freq_terms:
phrase_doc_freq[tuple([term])] = doc_freq[term]
# data structure is a list of list (document) of pairs - sentences: (int, list (of tokens))
# each item is a doc, a list of sents. each sent is a list of valid remaining phrases
# seed with one valid phrase per sent
#working_docs = [map(lambda sent: [sent], d) for d in tokenized_docs]
working_docs = [map(lambda (sid, sent): (sid, [sent]), d) for d in tokenized_docs]
working_freq_terms = set(freq_terms)
# sentences with one or more phrases that are frequent enough (under the apriori algorithm closure priniciple)
# don't bother whitling this down further at the start, almost all sentences have at least one freq term in them
working_sent_ids = set(sent_ids)
""" Apriori-like Algorithm for Phrase Extraction """
# use the downward closure principle from the apriori algorithm (https://en.wikipedia.org/wiki/Apriori_algorithm)
# combined with an inverted index to very efficiently extract common phrases
for phrase_len in range(2, config.max_phrase_length + 1):
phrase_start = time.time()
print "phrase_len", phrase_len
print len(working_docs), "docs", len(working_freq_terms), "terms", len(working_sent_ids), "sentences"
# for current phrase_len
current_phrase_doc_freq = defaultdict(int)
# used to look up sentence ids by phrase
phrase2sentids = defaultdict(set)
new_work_docs = []
for doc in working_docs:
new_work_sents = []
unique_potential_phrases = set()
for sent_id, phrases in doc:
if sent_id not in working_sent_ids:
continue
new_work_phrases = []
for phrase in phrases:
current_phrase = []
for term in phrase:
if term in working_freq_terms:
current_phrase.append(term)
else:
if len(current_phrase) >= phrase_len:
new_work_phrases.append(current_phrase)
current_phrase = []
if len(current_phrase) >= phrase_len:
new_work_phrases.append(current_phrase)
if len(new_work_phrases) > 0:
for phrase in new_work_phrases:
ngrams = compute_ngrams(phrase, phrase_len, phrase_len)
for tpl_ngram in ngrams:
unique_potential_phrases.add(tpl_ngram)
phrase2sentids[tpl_ngram].add(sent_id)
new_work_sents.append((sent_id, new_work_phrases))
# end for sent in doc
# for doc freq, need to compute unique phrases in document
for unique_tpl_phrase in unique_potential_phrases:
current_phrase_doc_freq[unique_tpl_phrase] +=1
if len(new_work_sents) > 0:
new_work_docs.append(new_work_sents)
new_working_freq_terms = set()
new_working_sent_ids = set()
for tuple_phrase, freq in current_phrase_doc_freq.items():
if freq < config.min_document_frequency:
continue
phrase_doc_freq[tuple_phrase] = freq
new_working_sent_ids.update(phrase2sentids[tuple_phrase])
for tok in tuple_phrase:
new_working_freq_terms.add(tok)
if len(new_working_freq_terms) <= 1 or len(new_work_docs) == 0 or len(new_working_sent_ids) == 0:
break
working_docs = new_work_docs
working_freq_terms = new_working_freq_terms
working_sent_ids = new_working_sent_ids
phrase_end = time.time()
print("\t%iphrases found" % len(phrase_doc_freq))
print("\ttook %i seconds" % (phrase_end - phrase_start))
print ""
end = time.time()
print("\t%i phrases found" % len(phrase_doc_freq))
print("\ttook %i seconds" % (end - start))
""" Remove Sub-Phrases """
# there are a lot of short phrases that always or nearly always have the same DF as the longer phrases that they constitute
# don't process unigrams
valid_phrases = set(phrase_doc_freq.keys())
phrases = filter(lambda k: len(k) > 1, phrase_doc_freq.keys())
to_remove = set()
for tpl_key in sorted(phrases, key = lambda k: -len(k)):
if tpl_key not in to_remove:
phrase_df = phrase_doc_freq[tpl_key]
# find all shorter sub-phrases
find_sub_phrases_to_remove(tpl_key, valid_phrases, phrase_doc_freq, to_remove)
print("%i sub-phrases found for removal" % len(to_remove))
#Dump phrases to file
cnt = 0
with open(config.keywords_file, "w+") as f:
for tpl in sorted(phrase_doc_freq.keys()):
# phrases only
if tpl not in to_remove:
cnt+=1
joined = " ".join(tpl)
f.write(joined + "\n")
print("%i phrases written to the file: %s" % (cnt, config.keywords_file))
full_end = time.time()
print("Whole process took %s seconds" % str(full_end - script_start))