forked from gchoi/face-recognition-using-siamese-network
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsiamese_network.py
68 lines (53 loc) · 1.83 KB
/
siamese_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#%% Import libraries
from keras import backend as K
from keras.layers import Activation
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.models import Sequential
#%% function: build_base_network()
def build_base_network(input_shape):
seq = Sequential()
nb_filter = [6, 12]
kernel_size = 3
#convolutional layer 1
seq.add(Conv2D(nb_filter[0],
(kernel_size, kernel_size),
input_shape=input_shape,
padding='valid',
data_format="channels_first"))
seq.add(Activation('relu'))
seq.add(MaxPooling2D(pool_size=(2, 2), data_format="channels_first"))
seq.add(Dropout(.25))
#convolutional layer 2
seq.add(Conv2D(nb_filter[1],
(kernel_size, kernel_size),
input_shape=input_shape,
padding='valid',
data_format="channels_first"))
seq.add(Activation('relu'))
seq.add(MaxPooling2D(pool_size=(2, 2), data_format="channels_first"))
seq.add(Dropout(.25))
#flatten
seq.add(Flatten())
seq.add(Dense(128, activation='relu'))
seq.add(Dropout(0.1))
seq.add(Dense(50, activation='relu'))
return seq
#%% function: euclidean_distance()
def euclidean_distance(vects):
x, y = vects
return K.sqrt(K.sum(K.square(x - y), axis=1, keepdims=True))
#%% function: eucl_dist_output_shape()
def eucl_dist_output_shape(shapes):
shape1, shape2 = shapes
return (shape1[0], 1)
#%% function: contrastive_loss()
def contrastive_loss(y_true, y_pred):
margin = 1
return K.mean(y_true * K.square(y_pred) + (1 - y_true) * K.square(K.maximum(margin - y_pred, 0)))
#%% function: compute_accuracy()
def compute_accuracy(predictions, labels):
return labels[predictions.ravel() < 0.5].mean()