-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcorpus.py
425 lines (354 loc) · 15.6 KB
/
corpus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# minke.corpus
# Corpus reader and parser object for accessing data on disk.
#
# Author: Benjamin Bengfort <[email protected]>
# Created: Tue Apr 19 12:39:13 2016 -0400
#
# Copyright (C) 2016 District Data Labs
# For license information, see LICENSE.txt
#
# ID: corpus.py [0753dd0] [email protected] $
"""
Corpus reader and parser object for accessing data on disk.
"""
##########################################################################
## Imports
##########################################################################
import os
import csv
import bs4
import time
import json
import nltk
import codecs
import pickle
import nltk.data
from six import string_types
from nltk.tokenize import WordPunctTokenizer
from nltk.corpus.reader.api import CorpusReader
from nltk.corpus.reader.api import CategorizedCorpusReader
from readability.readability import Document as Paper
from readability.readability import Unparseable
##########################################################################
## Module Constants
##########################################################################
DOC_PATTERN = r'(?!\.)[a-z_\s]+/[a-f0-9]+\.json'
PKL_PATTERN = r'(?!\.)[a-z_\s]+/[a-f0-9]+\.pickle'
CAT_PATTERN = r'([a-z_\s]+)/.*'
##########################################################################
## BaleenCorpusReader
##########################################################################
class BaleenCorpusReader(CategorizedCorpusReader, CorpusReader):
"""
A corpus reader for the raw JSON Baleen documents that have not been
preprocessed and have the complete feed information exported from Mongo.
"""
# Tags to extract as paragraphs from the HTML text
TAGS = [
'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'h7', 'p', 'li'
]
def __init__(self, root, fileids=DOC_PATTERN, tags=None,
word_tokenizer=WordPunctTokenizer(),
sent_tokenizer=nltk.data.LazyLoader(
'tokenizers/punkt/english.pickle'),
encoding='utf8', **kwargs):
"""
Initialize the corpus reader. Categorization arguments
(``cat_pattern``, ``cat_map``, and ``cat_file``) are passed to
the ``CategorizedCorpusReader`` constructor. The remaining arguments
are passed to the ``CorpusReader`` constructor.
"""
# Add the default category pattern if not passed into the class.
if not any(key.startswith('cat_') for key in kwargs.keys()):
kwargs['cat_pattern'] = CAT_PATTERN
CategorizedCorpusReader.__init__(self, kwargs)
CorpusReader.__init__(self, root, fileids, encoding)
self._word_tokenizer = word_tokenizer
self._sent_tokenizer = sent_tokenizer
self._good_tags = tags or self.TAGS
def feeds(self):
"""
Opens and returns the collection of feeds associated with the corpus.
"""
data = self.open('feeds.json')
return json.load(data)
def manifest(self):
"""
Opens and returns the manifest associated with the corpus.
"""
return csv.DictReader(self.open('manifest.csv'))
def _resolve(self, fileids, categories):
"""
Returns a list of fileids or categories depending on what is passed
to each internal corpus reader function. This primarily bubbles up to
the high level ``docs`` method, but is implemented here similar to
the nltk ``CategorizedPlaintextCorpusReader``.
"""
if fileids is not None and categories is not None:
raise ValueError("Specify fileids or categories, not both")
if categories is not None:
return self.fileids(categories)
if fileids is not None:
return fileids
return self.fileids()
def docs(self, fileids=None, categories=None):
"""
Returns the complete JSON document for every file in the corpus.
Note that I attempted to use the nltk ``CorpusView`` and ``concat``
methods here, but was not getting memory safe iteration. Instead the
simple Python generator by far did a better job of ensuring that file
handles got closed and that not all data was loaded into memory at a
time. In the future, I will try to re-implement the corpus view.
"""
# Resolve the fileids and the categories
fileids = self._resolve(fileids, categories)
# Create a generator, loading one document into memory at a time.
for path, enc, fileid in self.abspaths(fileids, True, True):
with codecs.open(path, 'r', encoding=enc) as f:
yield json.load(f)
def fields(self, fields, fileids=None, categories=None):
"""
Helper function to extract particular fields from the json documents.
Fields can be a string or an iterable of fields. If just one field is
passed in, then the values are returned, otherwise dictionaries of
the requsted fields are returned.
This method doesn't raise KeyErrors nor does it yield None values if
the document doesn't contain a particular field.
For example to get title and pubdate from the documents:
corpus.fields(['title', 'pubdate'])
Or to simply get all of the summaries:
corpus.fields('summary')
Note: there is not yet support for nested fields.
"""
if isinstance(fields, string_types):
fields = [fields,]
if len(fields) == 1:
for doc in self.docs(fileids, categories):
if fields[0] in doc:
yield doc[fields[0]]
else:
for doc in self.docs(fileids, categories):
yield {
key: doc.get(key, None)
for key in fields
}
def html(self, fileids=None, categories=None, readability=True):
"""
Returns the HTML content from each JSON document for every file in
the corpus, ensuring that it exists. Note, this simply returns the
HTML strings, it doesn't perform any parsing of the HTML.
If readability is True, clean HTML is returned.
"""
## Returns a generator of documents.
html = self.fields('content', fileids, categories)
if readability:
for doc in html:
try:
yield Paper(doc).summary()
except Unparseable as e:
print("Could not parse HTML: {}".format(e))
else:
for doc in html:
yield doc
def paras(self, fileids=None, categories=None):
"""
Uses BeautifulSoup to parse the paragraphs from the HTML.
Currently, this just sends raw text, it does not do any segmentation
or tokenization as the standard NLTK CorpusReader objects do.
"""
for html in self.html(fileids, categories):
soup = bs4.BeautifulSoup(html, 'lxml')
for element in soup.find_all(self._good_tags):
yield element.text
def sents(self, fileids=None, categories=None):
"""
Uses the built in sentence tokenizer to extract sentences from the
paragraphs. Note that this method uses BeautifulSoup to parse HTML.
"""
for paragraph in self.paras(fileids, categories):
for sentence in self._sent_tokenizer.tokenize(paragraph):
yield sentence
def words(self, fileids=None, categories=None):
"""
Uses the built in word tokenizer to extract tokens from sentences.
Note that this method uses BeautifulSoup to parse HTML content.
"""
for sentence in self.sents(fileids, categories):
for token in self._word_tokenizer.tokenize(sentence):
yield token
def sizes(self, fileids=None, categories=None):
"""
Returns a list of tuples, the fileid and the size on disk of the file.
This function is used to detect oddly large files in the corpus.
"""
# Resolve the fileids and the categories
fileids = self._resolve(fileids, categories)
# Create a generator, getting every path and computing filesize
for path, enc, fileid in self.abspaths(fileids, True, True):
yield os.path.getsize(path)
def describe(self, fileids=None, categories=None):
"""
Performs a single pass of the corpus and returns a dictionary with a
variety of metrics concerning the state of the corpus.
"""
# Structures to perform counting.
counts = nltk.FreqDist()
tokens = nltk.FreqDist()
started = time.time()
# Perform single pass over paragraphs, tokenize and count
for para in self.paras(fileids, categories):
counts['paras'] += 1
for sent in self._sent_tokenizer.tokenize(para):
counts['sents'] += 1
for word in self._word_tokenizer.tokenize(sent):
counts['words'] += 1
tokens[word] += 1
# Compute the number of files and categories in the corpus
n_fileids = len(self._resolve(fileids, categories) or self.fileids())
n_topics = len(self.categories(self._resolve(fileids, categories)))
# Return data structure with information
return {
'files': n_fileids,
'topics': n_topics,
'paras': counts['paras'],
'sents': counts['sents'],
'words': counts['words'],
'vocab': len(tokens),
'lexdiv': float(counts['words']) / float(len(tokens)),
'ppdoc': float(counts['paras']) / float(n_fileids),
'sppar': float(counts['sents']) / float(counts['paras']),
'secs': time.time() - started,
}
def describes(self, fileids=None, categories=None):
"""
Returns a string representation of the describe command.
"""
return (
"Baleen corpus contains {files:,} files in {topics:,} categories.\n"
"Structured as:\n"
" {paras:,} paragraphs ({ppdoc:0.3f} mean paragraphs per file)\n"
" {sents:,} sentences ({sppar:0.3f} mean sentences per paragraph).\n"
"Word count of {words:,} with a vocabulary of {vocab:,} "
"({lexdiv:0.3f} lexical diversity).\n"
"Corpus scan took {secs} seconds."
).format(**self.describe(fileids, categories))
##########################################################################
## BaleenCorpusReader
##########################################################################
class BaleenPickledCorpusReader(BaleenCorpusReader):
"""
A corpus reader for the preprocessed pickled documents created by the
`Preprocessor` module. This reader contains all the functionality of the
BaleenCorpusReader but may contain less data and fields, but hopefully
should be much faster reading and parsing data from disk.
"""
def __init__(self, root, fileids=PKL_PATTERN, **kwargs):
"""
Initialize the corpus reader. Categorization arguments
(``cat_pattern``, ``cat_map``, and ``cat_file``) are passed to
the ``CategorizedCorpusReader`` constructor. The remaining arguments
are passed to the ``CorpusReader`` constructor.
"""
# Add the default category pattern if not passed into the class.
if not any(key.startswith('cat_') for key in kwargs.keys()):
kwargs['cat_pattern'] = CAT_PATTERN
CategorizedCorpusReader.__init__(self, kwargs)
CorpusReader.__init__(self, root, fileids)
def docs(self, fileids=None, categories=None):
"""
Returns the document loaded from a pickled object for every file in
the corpus. Similar to the BaleenCorpusReader, this uses a generator
to acheive memory safe iteration.
"""
# Resolve the fileids and the categories
fileids = self._resolve(fileids, categories)
# Create a generator, loading one document into memory at a time.
for path, enc, fileid in self.abspaths(fileids, True, True):
with open(path, 'rb') as f:
yield pickle.load(f)
def fields(self, fields, fileids=None, categories=None):
"""
The preprocessed pickles do not contain raw JSON to extract fields.
"""
raise TypeError(
"Preprocessed corpus does not contain JSON fields."
)
def html(self, fileids=None, categories=None):
"""
The preprocessed pickles do not contain HTML data.
"""
raise TypeError(
"Preprocessed corpus does not contain HTML data."
)
def paras(self, fileids=None, categories=None):
"""
Returns a generator of paragraphs where each paragraph is a list of
sentences, which is in turn a list of (token, tag) tuples.
"""
for doc in self.docs(fileids, categories):
for paragraph in doc:
yield paragraph
def sents(self, fileids=None, categories=None):
"""
Returns a generator of sentences where each sentence is a list of
(token, tag) tuples.
"""
for paragraph in self.paras(fileids, categories):
for sentence in paragraph:
yield sentence
def words(self, fileids=None, categories=None):
"""
Returns a generator of (token, tag) tuples.
"""
for sentence in self.sents(fileids, categories):
for token in sentence:
yield token
def describe(self, fileids=None, categories=None):
"""
Performs a single pass of the corpus and returns a dictionary with a
variety of metrics concerning the state of the corpus.
"""
# Structures to perform counting.
counts = nltk.FreqDist()
tokens = nltk.FreqDist()
started = time.time()
# Perform single pass over paragraphs, tokenize and count
for para in self.paras(fileids, categories):
counts['paras'] += 1
for sent in para:
counts['sents'] += 1
for word, tag in sent:
counts['words'] += 1
tokens[word] += 1
# Compute the number of files and categories in the corpus
n_fileids = len(self._resolve(fileids, categories) or self.fileids())
n_topics = len(self.categories(self._resolve(fileids, categories)))
# Return data structure with information
return {
'files': n_fileids,
'topics': n_topics,
'paras': counts['paras'],
'sents': counts['sents'],
'words': counts['words'],
'vocab': len(tokens),
'lexdiv': float(counts['words']) / float(len(tokens)),
'ppdoc': float(counts['paras']) / float(n_fileids),
'sppar': float(counts['sents']) / float(counts['paras']),
'secs': time.time() - started,
}
##########################################################################
## Reader/Type Mapping
##########################################################################
READERS = {
'json': BaleenCorpusReader,
'pickle': BaleenPickledCorpusReader,
}
if __name__ == '__main__':
PROJECT = os.path.join(os.path.dirname(__file__), "..")
# RCORPUS = os.path.join(PROJECT, "fixtures", "corpus")
PCORPUS = os.path.join(PROJECT, "fixtures", "tagged")
SCORPUS = os.path.join(PROJECT, "fixtures", "sample")
# rcorpus = BaleenCorpusReader(RCORPUS)
pcorpus = BaleenPickledCorpusReader(PCORPUS)
# scorpus = BaleenCorpusReader(SCORPUS)
print(pcorpus.describes())