-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathomic_learn.py
692 lines (568 loc) · 33.8 KB
/
omic_learn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
"""OmicLearn main file."""
import random
from datetime import datetime
import numpy as np
import pandas as pd
import streamlit as st
from PIL import Image
import utils.session_states as session_states
from utils.helper import (get_download_link, get_system_report, load_data,
make_recording_widget, perform_cross_validation,
plot_confusion_matrices, plot_feature_importance,
plot_pr_curve_cv, plot_roc_curve_cv,
transform_dataset)
icon = Image.open('./utils/omic_learn.png')
# Checkpoint for XGBoost
xgboost_installed = False
try:
import xgboost
from xgboost import XGBClassifier
xgboost_installed = True
except ModuleNotFoundError:
st.error('Xgboost not installed. To use xgboost install using `conda install py-xgboost`')
# Define all versions
report = get_system_report()
version = report['omic_learn_version']
# Objdict class to conveniently store a state
class objdict(dict):
def __getattr__(self, name):
if name in self:
return self[name]
else:
raise AttributeError("No such attribute: " + name)
def __setattr__(self, name, value):
self[name] = value
def __delattr__(self, name):
if name in self:
del self[name]
else:
raise AttributeError("No such attribute: " + name)
# Functions / Element Creations
def main_components():
# External CSS
main_external_css = """
<style>
.footer {position: absolute; height: 50px; bottom: -150px; width:100%; padding:10px; text-align:center; }
#MainMenu, .reportview-container .main footer {display: none;}
.btn-outline-secondary {background: #FFF !important}
.download_link {color: #f63366 !important; text-decoration: none !important; z-index: 99999 !important;
cursor:pointer !important; margin: 15px 0px; border: 1px solid #f63366;
text-align:center; padding: 8px !important; width: 200px;}
.download_link:hover {background: #f63366 !important; color: #FFF !important;}
h1, h2, h3, h4, h5, h6, a, a:visited {color: #f84f57 !important}
label, stText, p, .caption {color: #035672 }
.sidebar .sidebar-content {background: #035672 !important;}
.sidebar-content label, stText, p, .caption {color: #FFF !important}
.sidebar-content a {text-decoration:underline;}
.tickBarMin, .tickBarMax {color: #f84f57 !important}
.markdown-text-container p {color: #035672 !important}
/* Tabs */
.tabs { position: relative; min-height: 200px; clear: both; margin: 40px auto 0px auto; background: #efefef; box-shadow: 0 48px 80px -32px rgba(0,0,0,0.3); }
.tab {float: left;}
.tab label { background: #f84f57; cursor: pointer; font-weight: bold; font-size: 18px; padding: 10px; color: #fff; transition: background 0.1s, color 0.1s; margin-left: -1px; position: relative; left: 1px; top: -29px; z-index: 2; }
.tab label:hover {background: #035672;}
.tab [type=radio] { display: none; }
.content { position: absolute; top: -1px; left: 0; background: #fff; right: 0; bottom: 0; padding: 30px 20px; transition: opacity .1s linear; opacity: 0; }
[type=radio]:checked ~ label { background: #035672; color: #fff;}
[type=radio]:checked ~ label ~ .content { z-index: 1; opacity: 1; }
/* Feature Importance Plotly Link Color */
.js-plotly-plot .plotly svg a {color: #f84f57 !important}
</style>
"""
st.markdown(main_external_css, unsafe_allow_html=True)
# Fundemental elements
widget_values = objdict()
record_widgets = objdict()
# Sidebar widgets
record_widgets['button_'] = make_recording_widget(st.sidebar.button, widget_values)
record_widgets['slider_'] = make_recording_widget(st.sidebar.slider, widget_values)
record_widgets['multiselect_'] = make_recording_widget(st.sidebar.multiselect, widget_values)
record_widgets['number_input_'] = make_recording_widget(st.sidebar.number_input, widget_values)
record_widgets['selectbox_'] = make_recording_widget(st.sidebar.selectbox, widget_values)
record_widgets['multiselect'] = make_recording_widget(st.multiselect, widget_values)
return widget_values, record_widgets
# Show main text and data upload section
def main_text_and_data_upload(state):
st.title("OmicLearn — ML platform for biomarkers")
st.info("""
* Upload your excel / csv file here. Maximum size is 200 Mb.
* Each row corresponds to a sample, each column to a feature.
* 'Features' such as protein IDs, gene names, lipids or miRNA IDs should be uppercase.
* Additional features should be marked with a leading '_'.
""")
st.subheader("Dataset")
file_buffer = st.file_uploader("Upload your dataset below", type=["csv", "xlsx", "xls"])
st.markdown("By uploading a file, you agree that you accepting "
"[the licence agreement](https://github.com/OmicEra/OmicLearn).")
delimiter = st.selectbox("Determine the delimiter in your dataset", ["Excel File", "Comma (,)", "Semicolon (;)"])
state['sample_file'] = st.selectbox("Or select sample file here:", ["None", "Alzheimer", "Sample"])
df, warnings = load_data(file_buffer, delimiter)
for warning in warnings:
st.warning(warning)
state['df'] = df
return state
# Choosing sample dataset and data parameter selections
def checkpoint_for_data_upload(state, record_widgets):
multiselect = record_widgets.multiselect
dataframe_length = len(state.df)
max_df_length = 50
# Sample dataset / uploaded file selection
if state.sample_file != 'None' and dataframe_length:
st.warning("Please, either choose a sample file or set it as `None` to work on your file")
state['df'] = pd.DataFrame()
elif state.sample_file != 'None':
if state.sample_file == "Alzheimer":
st.info("""
**This dataset is retrieved from the following paper and the code for parsing is available at
[GitHub](https://github.com/OmicEra/OmicLearn/blob/master/data/Alzheimer_paper.ipynb):**\n
Bader, J., Geyer, P., Müller, J., Strauss, M., Koch, M., & Leypoldt, F. et al. (2020).
Proteome profiling in cerebrospinal fluid reveals novel biomarkers of Alzheimer's disease.
Molecular Systems Biology, 16(6). doi: [10.15252/msb.20199356](http://doi.org/10.15252/msb.20199356) """)
state['df'] = pd.read_excel('data/' + state.sample_file + '.xlsx')
st.write(state.df)
elif 0 < dataframe_length < max_df_length:
st.text("Using the following dataset:")
st.write(state.df)
elif dataframe_length > max_df_length:
st.text("Using the following dataset:")
st.info(f"The dataframe is too large, displaying the first {max_df_length} rows.")
st.write(
state.df.head(max_df_length)
)
else:
st.error('No dataset uploaded or selected.')
state['n_missing'] = state.df.isnull().sum().sum()
if len(state.df) > 0:
if state.n_missing > 0:
st.warning('Found {} missing values. '
'Use missing value imputation or xgboost classifier.'.format(state.n_missing))
# Distinguish the features from others
state['proteins'] = [_ for _ in state.df.columns.to_list() if _[0] != '_']
state['not_proteins'] = [_ for _ in state.df.columns.to_list() if _[0] == '_']
# Dataset -- Subset
st.markdown("\nSubset allows you to specify a subset of data based on values within a comma. \n"
"This way, you can exclude data that should not be used at all.")
if st.checkbox("Create subset"):
st.subheader("Subset")
st.text('Create a subset based on values in the selected column')
state['subset_column'] = st.selectbox("Select subset column:", ['None']+state.not_proteins)
if state.subset_column != 'None':
subset_options = state.df[state.subset_column].value_counts().index.tolist()
subset_class = multiselect("Select values to keep:", subset_options, default=subset_options)
state['df_sub'] = state.df[state.df[state.subset_column].isin(subset_class)].copy()
elif state.subset_column == 'None':
state['df_sub'] = state.df.copy()
state['subset_column'] = 'None'
else:
state['df_sub'] = state.df.copy()
state['subset_column'] = 'None'
# Dataset -- Feature selections
st.subheader("Classification target")
state['target_column'] = st.selectbox("Select target column:", state.not_proteins)
st.markdown("Unique elements in `{}` column:".format(state.target_column))
unique_elements = state.df_sub[state.target_column].value_counts()
st.write(unique_elements)
unique_elements_lst = unique_elements.index.tolist()
# Dataset -- Define the classes
st.subheader("Define classes".format(state.target_column))
state['class_0'] = multiselect("Select Class 0:", unique_elements_lst, default=None)
state['class_1'] = multiselect("Select Class 1:",
[_ for _ in unique_elements_lst if _ not in state.class_0], default=None)
state['remainder'] = [_ for _ in state.not_proteins if _ is not state.target_column]
if state.class_0 and state.class_1:
st.subheader("Additional features")
st.text("Select additional features. All non numerical values will be encoded (e.g. M/F -> 0,1)")
state['additional_features'] = multiselect("Select additional features for trainig:", state.remainder, default=None)
# Exclude features
if st.checkbox("Exclude features"):
# File uploading target_column for exclusion
exclusion_file_buffer = st.file_uploader("Upload your CSV (comma(,) seperated) file here in which each row corresponds to a feature to be excluded.", type=["csv"])
exclusion_df, exc_df_warnings = load_data(exclusion_file_buffer, "Comma (,)")
for warning in exc_df_warnings:
st.warning(warning)
if len(exclusion_df) > 0:
st.text("The following features will be exlcuded:")
st.write(exclusion_df)
exclusion_df_list = list(exclusion_df.iloc[:, 0].unique())
state['exclude_features'] = multiselect(
"Select features to be excluded:",
state.proteins,
default=exclusion_df_list
)
else:
state['exclude_features'] = multiselect(
"Select features to be excluded:",
state.proteins, default=[]
)
else:
state['exclude_features'] = []
if st.checkbox("Manually select features"):
st.markdown("Manually select a subset of features. If only these features should be used, also set the "
"`Feature selection` method to `None`. Otherwise feature selection will be applied.")
state.proteins = multiselect("Select your features manually:", state.proteins, default=None)
# Dataset -- Cohort selections
state['cohort_checkbox'] = st.checkbox("Cohort comparison")
if state.cohort_checkbox:
st.text('Select cohort column to train on one and predict on another:')
not_proteins_excluded_target_option = state.not_proteins
not_proteins_excluded_target_option.remove(state.target_column)
state['cohort_column'] = st.selectbox("Select cohort column:", not_proteins_excluded_target_option)
else:
state['cohort_column'] = None
if 'exclude_features' not in state:
state['exclude_features'] = []
state['proteins'] = [_ for _ in state.proteins if _ not in state.exclude_features]
return state
# Generate sidebar elements
def generate_sidebar_elements(state, record_widgets):
slider_ = record_widgets.slider_
selectbox_ = record_widgets.selectbox_
number_input_ = record_widgets.number_input_
# Sidebar -- Image/Title
st.sidebar.image(icon, use_column_width=True, caption="OmicLearn " + version)
st.sidebar.markdown("# [Options](https://github.com/OmicEra/OmicLearn/wiki/METHODS)")
# Sidebar -- Random State
state['random_state'] = slider_(
"Random State:", min_value=0, max_value=99, value=23)
# Sidebar -- Preprocessing
st.sidebar.markdown('## [Preprocessing](https://github.com/OmicEra/OmicLearn/wiki/METHODS-%7C-1.-Preprocessing)')
normalizations = ['None', 'StandardScaler', 'MinMaxScaler', 'RobustScaler', 'PowerTransformer', 'QuantileTransformer']
state['normalization'] = selectbox_("Normalization method:", normalizations)
normalization_params = {}
if state.normalization == "PowerTransformer":
normalization_params['method'] = selectbox_("Power transformation method:", ["Yeo-Johnson", "Box-Cox"]).lower()
elif state.normalization == "QuantileTransformer":
normalization_params['random_state'] = state.random_state
normalization_params['n_quantiles'] = number_input_(
"Number of quantiles:", value=100, min_value=1, max_value=2000)
normalization_params['output_distribution'] = selectbox_("Output distribution method:", ["Uniform", "Normal"]).lower()
if state.n_missing > 0:
st.sidebar.markdown('## [Missing value imputation](https://github.com/OmicEra/OmicLearn/wiki/METHODS-%7C-1.-Preprocessing#1-2-imputation-of-missing-values)')
missing_values = ['Zero', 'Mean', 'Median', 'KNNImputer', 'None']
state['missing_value'] = selectbox_("Missing value imputation", missing_values)
else:
state['missing_value'] = 'None'
state['normalization_params'] = normalization_params
# Sidebar -- Feature Selection
st.sidebar.markdown('## [Feature selection](https://github.com/OmicEra/OmicLearn/wiki/METHODS-%7C-2.-Feature-selection)')
feature_methods = ['ExtraTrees', 'k-best (mutual_info_classif)', 'k-best (f_classif)', 'k-best (chi2)', 'None']
state['feature_method'] = selectbox_("Feature selection method:", feature_methods)
if state.feature_method != 'None':
state['max_features'] = number_input_('Maximum number of features:',
value=20, min_value=1,
max_value=2000)
else:
# Define `max_features` as 0 if `feature_method` is `None`
state['max_features'] = 0
if state.feature_method == "ExtraTrees":
state['n_trees'] = number_input_('Number of trees in the forest:',
value=100, min_value=1,
max_value=2000)
else:
state['n_trees'] = 0
# Sidebar -- Classification method selection
st.sidebar.markdown('## [Classification](https://github.com/OmicEra/OmicLearn/wiki/METHODS-%7C-3.-Classification#3-classification)')
classifiers = ['AdaBoost', 'LogisticRegression', 'KNeighborsClassifier',
'RandomForest', 'DecisionTree', 'LinearSVC']
if xgboost_installed:
classifiers += ['XGBoost']
# Disable all other classification methods
if (state.n_missing > 0) and (state.missing_value == 'None'):
classifiers = ['XGBoost']
state['classifier'] = selectbox_("Specify the classifier:", classifiers)
classifier_params = {}
classifier_params['random_state'] = state['random_state']
if state.classifier == 'AdaBoost':
classifier_params['n_estimators'] = number_input_('Number of estimators:', value=100, min_value=1, max_value=2000)
classifier_params['learning_rate'] = number_input_('Learning rate:', value=1.0, min_value=0.001, max_value=100.0)
elif state.classifier == 'KNeighborsClassifier':
classifier_params['n_neighbors'] = number_input_('Number of neighbors:', value=100, min_value=1, max_value=2000)
classifier_params['weights'] = selectbox_("Select weight function used:", ["uniform", "distance"])
classifier_params['algorithm'] = selectbox_("Algorithm for computing the neighbors:", ["auto", "ball_tree", "kd_tree", "brute"])
elif state.classifier == 'LogisticRegression':
classifier_params['penalty'] = selectbox_("Specify norm in the penalization:", ["l2", "l1", "ElasticNet", "None"]).lower()
classifier_params['solver'] = selectbox_("Select the algorithm for optimization:", ["lbfgs", "newton-cg", "liblinear", "sag", "saga"])
classifier_params['max_iter'] = number_input_('Maximum number of iteration:', value=100, min_value=1, max_value=2000)
classifier_params['C'] = number_input_('C parameter:', value=1, min_value=1, max_value=100)
elif state.classifier == 'RandomForest':
classifier_params['n_estimators'] = number_input_('Number of estimators:', value=100, min_value=1, max_value=2000)
classifier_params['criterion'] = selectbox_("Function for measure the quality:", ["gini", "entropy"])
classifier_params['max_features'] = selectbox_("Number of max. features:", ["auto", "int", "sqrt", "log2"])
if classifier_params['max_features'] == "int":
classifier_params['max_features'] = number_input_('Number of max. features:', value=5, min_value=1, max_value=100)
elif state.classifier == 'DecisionTree':
classifier_params['criterion'] = selectbox_("Function for measure the quality:", ["gini", "entropy"])
classifier_params['max_features'] = selectbox_("Number of max. features:", ["auto", "int", "sqrt", "log2"])
if classifier_params['max_features'] == "int":
classifier_params['max_features'] = number_input_('Number of max. features:', value=5, min_value=1, max_value=100)
elif state.classifier == 'LinearSVC':
classifier_params['penalty'] = selectbox_("Specify norm in the penalization:", ["l2", "l1"])
classifier_params['loss'] = selectbox_("Select loss function:", ["squared_hinge", "hinge"])
classifier_params['C'] = number_input_('C parameter:', value=1, min_value=1, max_value=100)
classifier_params['cv_generator'] = number_input_('Cross-validation generator:', value=2, min_value=2, max_value=100)
elif state.classifier == 'XGBoost':
classifier_params['learning_rate'] = number_input_('Learning rate:', value=0.3, min_value=0.0, max_value=1.0)
classifier_params['min_split_loss'] = number_input_('Min. split loss:', value=0, min_value=0, max_value=100)
classifier_params['max_depth'] = number_input_('Max. depth:', value=6, min_value=0, max_value=100)
classifier_params['min_child_weight'] = number_input_('Min. child weight:', value=1, min_value=0, max_value=100)
state['classifier_params'] = classifier_params
# Sidebar -- Cross-Validation
st.sidebar.markdown('## [Cross-validation](https://github.com/OmicEra/OmicLearn/wiki/METHODS-%7C-4.-Validation#4-1-cross-validation)')
state['cv_method'] = selectbox_("Specify CV method:", ["RepeatedStratifiedKFold", "StratifiedKFold", "StratifiedShuffleSplit"])
state['cv_splits'] = number_input_('CV Splits:', min_value=2, max_value=10, value=5)
# Define placeholder variables for CV
if state.cv_method == 'RepeatedStratifiedKFold':
state['cv_repeats'] = number_input_('CV Repeats:', min_value=1, max_value=50, value=10)
return state
# Display results and plots
def classify_and_plot(state):
state.bar = st.progress(0)
# Cross-Validation
st.markdown("Running Cross-validation")
cv_results, cv_curves = perform_cross_validation(state)
st.header('Cross-validation')
# Feature importances from the classifier
st.subheader('Feature importances from the classifier')
if state.cv_method == 'RepeatedStratifiedKFold':
st.markdown(f'This is the average feature importance from all {state.cv_splits*state.cv_repeats} cross validation runs.')
else:
st.markdown(f'This is the average feature importance from all {state.cv_splits} cross validation runs.')
if cv_curves['feature_importances_'] is not None:
# Check whether all feature importance attributes are 0 or not
if pd.DataFrame(cv_curves['feature_importances_']).isin([0]).all().all() == False:
p, feature_df, feature_df_wo_links = plot_feature_importance(cv_curves['feature_importances_'])
st.plotly_chart(p, use_container_width=True)
if p:
get_download_link(p, 'clf_feature_importance.pdf')
get_download_link(p, 'clf_feature_importance.svg')
# Display `feature_df` with NCBI links
st.subheader("Feature importances from classifier table")
st.write(feature_df.to_html(escape=False, index=False), unsafe_allow_html=True)
get_download_link(feature_df_wo_links, 'clf_feature_importances.csv')
else:
st.warning("All feature importance attribute as zero (0). Hence, the plot and table are not displayed.")
else:
st.warning('Feature importance attribute is not implemented for this classifier.')
# ROC-AUC
st.subheader('Receiver operating characteristic')
p = plot_roc_curve_cv(cv_curves['roc_curves_'])
st.plotly_chart(p)
if p:
get_download_link(p, 'roc_curve.pdf')
get_download_link(p, 'roc_curve.svg')
# Precision-Recall Curve
st.subheader('Precision-Recall Curve')
st.text("Precision-Recall (PR) Curve might be used for imbalanced datasets.")
p = plot_pr_curve_cv(cv_curves['pr_curves_'], cv_results['class_ratio_test'])
st.plotly_chart(p)
if p:
get_download_link(p, 'pr_curve.pdf')
get_download_link(p, 'pr_curve.svg')
# Confusion Matrix (CM)
st.subheader('Confusion matrix')
names = ['CV_split {}'.format(_+1) for _ in range(len(cv_curves['y_hats_']))]
names.insert(0, 'Sum of all splits')
p = plot_confusion_matrices(state.class_0, state.class_1, cv_curves['y_hats_'], names)
st.plotly_chart(p)
if p:
get_download_link(p, 'cm.pdf')
get_download_link(p, 'cm.svg')
# Results
st.subheader('Run results for `{}`'.format(state.classifier))
state['summary'] = pd.DataFrame(pd.DataFrame(cv_results).describe())
st.write(state.summary)
get_download_link(state.summary, "run_results.csv")
if state.cohort_checkbox:
st.header('Cohort comparison')
cohort_results, cohort_curves = perform_cross_validation(state, state.cohort_column)
# ROC-AUC for Cohorts
st.subheader('Receiver operating characteristic')
p = plot_roc_curve_cv(cohort_curves['roc_curves_'], cohort_curves['cohort_combos'])
st.plotly_chart(p)
if p:
get_download_link(p, 'roc_curve_cohort.pdf')
get_download_link(p, 'roc_curve_cohort.svg')
# PR Curve for Cohorts
st.subheader('Precision-Recall Curve')
st.text("Precision-Recall (PR) Curve might be used for imbalanced datasets.")
p = plot_pr_curve_cv(cohort_curves['pr_curves_'], cohort_results['class_ratio_test'], cohort_curves['cohort_combos'])
st.plotly_chart(p)
if p:
get_download_link(p, 'pr_curve_cohort.pdf')
get_download_link(p, 'pr_curve_cohort.svg')
st.subheader('Confusion matrix')
names = ['Train on {}, Test on {}'.format(_[0], _[1]) for _ in cohort_curves['cohort_combos']]
names.insert(0, 'Sum of cohort comparisons')
# Confusion Matrix (CM) for Cohorts
p = plot_confusion_matrices(state.class_0, state.class_1, cohort_curves['y_hats_'], names)
st.plotly_chart(p)
if p:
get_download_link(p, 'cm_cohorts.pdf')
get_download_link(p, 'cm_cohorts.svg')
state['cohort_summary'] = pd.DataFrame(pd.DataFrame(cv_results).describe())
st.write(state.cohort_summary)
state['cohort_combos'] = cohort_curves['cohort_combos']
state['cohort_results'] = cohort_results
get_download_link(state.cohort_summary, "run_results_cohort.csv")
return state
# Generate summary text
def generate_text(state):
st.write("## Summary")
text = ""
# Packages
packages_plain_text = """
OmicLearn ({omic_learn_version}) was utilized for performing the data analysis, model execution, and generating the plots and charts.
Machine learning was done in Python ({python_version}). Feature tables were imported via the Pandas package ({pandas_version}) and manipulated using the Numpy package ({numpy_version}).
The machine learning pipeline was employed using the scikit-learn package ({sklearn_version}).
For generating the plots and charts, Plotly ({plotly_version}) library was used.
"""
text += packages_plain_text.format(**report)
# Normalization
if state.normalization == 'None':
text += 'No normalization on the data was performed. '
elif state.normalization in ['StandardScaler', 'MinMaxScaler', 'RobustScaler']:
text += f"Data was normalized in each using a {state.normalization} approach. "
else:
params = [f'{k} = {v}' for k, v in state.normalization_params.items()]
text += f"Data was normalized in each using a {state.normalization} ({' '.join(params)}) approach. "
# Missing value impt.
if state.missing_value != "None":
text += 'To impute missing values, a {}-imputation strategy is used. '.format(state.missing_value)
else:
text += 'The dataset contained no missing values; hence no imputation was performed. '
# Features
if state.feature_method == 'None':
text += 'No feature selection algorithm was applied. '
elif state.feature_method == 'ExtraTrees':
text += 'Features were selected using a {} (n_trees={}) strategy with the maximum number of {} features. '.format(state.feature_method, state.n_trees, state.max_features)
else:
text += 'Features were selected using a {} strategy with the maximum number of {} features. '.format(state.feature_method, state.max_features)
text += 'Normalization and feature selection was individually performed using the training data of each split. '
# Classification
params = [f'{k} = {v}' for k, v in state.classifier_params.items()]
text += f"For classification, we used a {state.classifier}-Classifier ({' '.join(params)}). "
# Cross-Validation
if state.cv_method == 'RepeatedStratifiedKFold':
cv_plain_text = """
When using (RepeatedStratifiedKFold) a repeated (n_repeats={}), stratified cross-validation (n_splits={}) approach to classify {} vs. {},
we achieved a receiver operating characteristic (ROC) with an average AUC (area under the curve) of {:.2f} ({:.2f} std)
and precision-recall (PR) Curve with an average AUC of {:.2f} ({:.2f} std).
"""
text += cv_plain_text.format(state.cv_repeats, state.cv_splits, ''.join(state.class_0), ''.join(state.class_1),
state.summary.loc['mean']['roc_auc'], state.summary.loc['std']['roc_auc'], state.summary.loc['mean']['pr_auc'], state.summary.loc['std']['pr_auc'])
else:
cv_plain_text = """
When using {} cross-validation approach (n_splits={}) to classify {} vs. {}, we achieved a receiver operating characteristic (ROC)
with an average AUC (area under the curve) of {:.2f} ({:.2f} std) and Precision-Recall (PR) Curve with an average AUC of {:.2f} ({:.2f} std).
"""
text += cv_plain_text.format(state.cv_method, state.cv_splits, ''.join(state.class_0), ''.join(state.class_1),
state.summary.loc['mean']['roc_auc'], state.summary.loc['std']['roc_auc'], state.summary.loc['mean']['pr_auc'], state.summary.loc['std']['pr_auc'])
if state.cohort_column is not None:
text += 'When training on one cohort and predicting on another to classify {} vs. {}, we achieved the following AUCs: '.format(''.join(state.class_0), ''.join(state.class_1))
for i, cohort_combo in enumerate(state.cohort_combos):
text += '{:.2f} when training on {} and predicting on {} '.format(state.cohort_results['roc_auc'][i], cohort_combo[0], cohort_combo[1])
text += ', and {:.2f} for PR Curve when training on {} and predicting on {}. '.format(state.cohort_results['pr_auc'][i], cohort_combo[0], cohort_combo[1])
# Print the all text
st.info(text)
# Create new list and dict for sessions
@st.cache(allow_output_mutation=True)
def get_sessions():
return [], {}
# Saving session info
def save_sessions(widget_values, user_name):
session_no, session_dict = get_sessions()
session_no.append(len(session_no) + 1)
session_dict[session_no[-1]] = widget_values
sessions_df = pd.DataFrame(session_dict)
sessions_df = sessions_df.T
sessions_df = sessions_df.drop(sessions_df[sessions_df["user"] != user_name].index).reset_index(drop=True)
new_column_names = {k:v.replace(":", "").replace("Select", "") for k, v in zip(sessions_df.columns, sessions_df.columns)}
sessions_df = sessions_df.rename(columns=new_column_names)
sessions_df = sessions_df.drop("user", axis=1)
st.write("## Session History")
st.dataframe(sessions_df.T.style.set_precision(4)) # Display only 3 decimal points in UI side
get_download_link(sessions_df, "session_history.csv")
# Generate footer
def generate_footer_parts():
# Citations
citations = """
<br> <b>APA Format:</b> <br>
Torun FM, Virreira Winter S, Doll S, Riese FM, Vorobyev A, Mueller-Reif JB, Geyer PE, Strauss MT (2021).
Transparent exploration of machine learning for biomarker discovery from proteomics and omics data. doi: <a href="https://doi.org/10.1101/2021.03.05.434053" target="_blank">10.1101/2021.03.05.434053</a>.
"""
# Put the footer with tabs
footer_parts_html = """
<div class="tabs">
<div class="tab"> <input type="radio" id="tab-1" name="tab-group-1" checked> <label for="tab-1">Citations</label> <div class="content"> <p> {} </p> </div> </div>
<div class="tab"> <input type="radio" id="tab-2" name="tab-group-1"> <label for="tab-2">Report bugs</label> <div class="content">
<p><br>
We appreciate all contributions. 👍 <br>
You can report the bugs or request a feature using the link below or sending us an e-mail:
<br><br>
<a class="download_link" href="https://github.com/OmicEra/OmicLearn/issues/new/choose" target="_blank">Report a bug via GitHub</a>
<a class="download_link" href="mailto:[email protected]">Report a bug via Email</a>
</p>
</div> </div>
</div>
<div class="footer">
<i> OmicLearn {} </i> <br> <img src="https://omicera.com/wp-content/uploads/2020/05/cropped-oe-favicon-32x32.jpg" alt="OmicEra Diagnostics GmbH">
<a href="https://omicera.com" target="_blank">OmicEra</a>.
</div>
""".format(citations, version)
st.write("## Cite us & Report bugs")
st.markdown(footer_parts_html, unsafe_allow_html=True)
# Main Function
def OmicLearn_Main():
state = objdict()
state['df'] = pd.DataFrame()
state['class_0'] = None
state['class_1'] = None
# Main components
widget_values, record_widgets = main_components()
# Welcome text and Data uploading
state = main_text_and_data_upload(state)
# Checkpoint for whether data uploaded/selected
state = checkpoint_for_data_upload(state, record_widgets)
# Sidebar widgets
state = generate_sidebar_elements(state, record_widgets)
# Analysis Part
if len(state.df) > 0 and not (state.class_0 and state.class_1):
st.error('Start with defining classes.')
elif (state.df is not None) and (state.class_0 and state.class_1) and (st.button('Run analysis', key='run')):
state.features = state.proteins + state.additional_features
st.markdown("Using the following features: Class 0 `{}`, Class 1 `{}`".format(state.class_0, state.class_1))
subset = state.df_sub[state.df_sub[state.target_column].isin(state.class_0) | state.df_sub[state.target_column].isin(state.class_1)].copy()
state.y = subset[state.target_column].isin(state.class_0) # is class 0 will be 1!
state.X = transform_dataset(subset, state.additional_features, state.proteins)
if state.cohort_column is not None:
state['X_cohort'] = subset[state.cohort_column]
st.markdown('Using classifier `{}`.'.format(state.classifier))
st.markdown(f'Using a total of `{len(state.features)}` features.')
if len(state.features) < 10:
st.markdown(f'Features `{state.features}`.')
# Plotting and Get the results
state = classify_and_plot(state)
# Generate summary text
generate_text(state)
# Session and Run info
widget_values["Date"] = datetime.now().strftime("%d/%m/%Y %H:%M:%S") + " (UTC)"
for _ in state.summary.columns:
widget_values[_+'_mean'] = state.summary.loc['mean'][_]
widget_values[_+'_std'] = state.summary.loc['std'][_]
user_name = str(random.randint(0, 10000)) + "OmicLearn"
session_state = session_states.get(user_name=user_name)
widget_values["user"] = session_state.user_name
save_sessions(widget_values, session_state.user_name)
# Generate footer
generate_footer_parts()
else:
pass
# Run the OmicLearn
if __name__ == '__main__':
try:
OmicLearn_Main()
except (ValueError, IndexError) as val_ind_error:
st.error("There is a problem with values/parameters or dataset due to {}.".format(val_ind_error))
except TypeError as e:
# st.warning("TypeError exists in {}".format(e))
pass