-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathCardinalityMatching.py
315 lines (272 loc) · 11 KB
/
CardinalityMatching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
"""CardinalityMatching.py
Find maximum cardinality matchings in general undirected graphs.
D. Eppstein, UC Irvine, September 6, 2003.
"""
import sys
from UnionFind import UnionFind
from Util import arbitrary_item
def matching(G, initialMatching = None):
"""Find a maximum cardinality matching in a graph G.
G is represented in modified GvR form: iter(G) lists its vertices;
iter(G[v]) lists the neighbors of v; w in G[v] tests adjacency.
For maximal efficiency, G and G[v] should be dictionaries, so
that adjacency tests take constant time each.
The output is a dictionary mapping vertices to their matches;
unmatched vertices are omitted from the dictionary.
We use Edmonds' blossom-contraction algorithm, as described e.g.
in Galil's 1986 Computing Surveys paper.
"""
# Copy initial matching so we can use it nondestructively
# and augment it greedily to reduce main loop iterations
matching = greedyMatching(G,initialMatching)
def augment():
"""Search for a single augmenting path.
Returns true if the matching size was increased, false otherwise.
"""
# Data structures for augmenting path search:
#
# leader: union-find structure; the leader of a blossom is one
# of its vertices (not necessarily topmost), and leader[v] always
# points to the leader of the largest blossom containing v
#
# S: dictionary of blossoms at even levels of the structure tree.
# Dictionary keys are names of blossoms (as returned by the union-find
# data structure) and values are the structure tree parent of the blossom
# (a T-node, or the top vertex if the blossom is a root of a structure tree).
#
# T: dictionary of vertices at odd levels of the structure tree.
# Dictionary keys are the vertices; T[x] is a vertex with an unmatched
# edge to x. To find the parent in the structure tree, use leader[T[x]].
#
# unexplored: collection of unexplored vertices within blossoms of S
#
# base: if x was originally a T-vertex, but becomes part of a blossom,
# base[t] will be the pair (v,w) at the base of the blossom, where v and t
# are on the same side of the blossom and w is on the other side.
leader = UnionFind()
S = {}
T = {}
unexplored = []
base = {}
# Subroutines for augmenting path search.
# Many of these are called only from one place, but are split out
# as subroutines to improve modularization and readability.
def blossom(v,w,a):
"""Create a new blossom from edge v-w with common ancestor a."""
def findSide(v,w):
path = [leader[v]]
b = (v,w) # new base for all T nodes found on the path
while path[-1] != a:
tnode = S[path[-1]]
path.append(tnode)
base[tnode] = b
unexplored.append(tnode)
path.append(leader[T[tnode]])
return path
a = leader[a] # sanity check
path1,path2 = findSide(v,w), findSide(w,v)
leader.union(*path1)
leader.union(*path2)
S[leader[a]] = S[a] # update structure tree
topless = object() # should be unequal to any graph vertex
def alternatingPath(start, goal = topless):
"""Return sequence of vertices on alternating path from start to goal.
The goal must be a T node along the path from the start to
the root of the structure tree. If goal is omitted, we find
an alternating path to the structure tree root.
"""
path = []
while 1:
while start in T:
v, w = base[start]
vs = alternatingPath(v, start)
vs.reverse()
path += vs
start = w
path.append(start)
if start not in matching:
return path # reached top of structure tree, done!
tnode = matching[start]
path.append(tnode)
if tnode == goal:
return path # finished recursive subpath
start = T[tnode]
def alternate(v):
"""Make v unmatched by alternating the path to the root of its structure tree."""
path = alternatingPath(v)
path.reverse()
for i in range(0,len(path)-1,2):
matching[path[i]] = path[i+1]
matching[path[i+1]] = path[i]
def addMatch(v, w):
"""Here with an S-S edge vw connecting vertices in different structure trees.
Find the corresponding augmenting path and use it to augment the matching.
"""
alternate(v)
alternate(w)
matching[v] = w
matching[w] = v
def ss(v,w):
"""Handle detection of an S-S edge in augmenting path search.
Like augment(), returns true iff the matching size was increased.
"""
if leader[v] == leader[w]:
return False # self-loop within blossom, ignore
# parallel search up two branches of structure tree
# until we find a common ancestor of v and w
path1, head1 = {}, v
path2, head2 = {}, w
def step(path, head):
head = leader[head]
parent = leader[S[head]]
if parent == head:
return head # found root of structure tree
path[head] = parent
path[parent] = leader[T[parent]]
return path[parent]
while 1:
head1 = step(path1, head1)
head2 = step(path2, head2)
if head1 == head2:
blossom(v, w, head1)
return False
if leader[S[head1]] == head1 and leader[S[head2]] == head2:
addMatch(v, w)
return True
if head1 in path2:
blossom(v, w, head1)
return False
if head2 in path1:
blossom(v, w, head2)
return False
# Start of main augmenting path search code.
for v in G:
if v not in matching:
S[v] = v
unexplored.append(v)
current = 0 # index into unexplored, in FIFO order so we get short paths
while current < len(unexplored):
v = unexplored[current]
current += 1
for w in G[v]:
if leader[w] in S: # S-S edge: blossom or augmenting path
if ss(v,w):
return True
elif w not in T: # previously unexplored node, add as T-node
T[w] = v
u = matching[w]
if leader[u] not in S:
S[u] = w # and add its match as an S-node
unexplored.append(u)
return False # ran out of graph without finding an augmenting path
# augment the matching until it is maximum
while augment():
pass
return matching
def greedyMatching(G, initialMatching=None):
"""Near-linear-time greedy heuristic for creating high-cardinality matching.
If there is any vertex with one unmatched neighbor, we match it.
Otherwise, if there is a vertex with two unmatched neighbors, we contract
it away and store the contraction on a stack for later matching.
If neither of these two cases applies, we match an arbitrary edge.
"""
# Copy initial matching so we can use it nondestructively
matching = {}
if initialMatching:
for x in initialMatching:
matching[x] = initialMatching[x]
# Copy graph to new subgraph of available edges
# Representation: nested dictionary rep->rep->pair
# where the reps are representative vertices for merged clusters
# and the pair is an unmatched original pair of vertices
avail = {}
has_edge = False
for v in G:
if v not in matching:
avail[v] = {}
for w in G[v]:
if w not in matching:
avail[v][w] = (v,w)
has_edge = True
if not avail[v]:
del avail[v]
if not has_edge:
return matching
# make sets of degree one and degree two vertices
deg1 = {v for v in avail if len(avail[v]) == 1}
deg2 = {v for v in avail if len(avail[v]) == 2}
d2edges = []
def updateDegree(v):
"""Cluster degree changed, update sets."""
if v in deg1:
deg1.remove(v)
elif v in deg2:
deg2.remove(v)
if len(avail[v]) == 0:
del avail[v]
elif len(avail[v]) == 1:
deg1.add(v)
elif len(avail[v]) == 2:
deg2.add(v)
def addMatch(v,w):
"""Add edge connecting two given cluster reps, update avail."""
p,q = avail[v][w]
matching[p] = q
matching[q] = p
for x in avail[v].keys():
if x != w:
del avail[x][v]
updateDegree(x)
for x in avail[w].keys():
if x != v:
del avail[x][w]
updateDegree(x)
avail[v] = avail[w] = {}
updateDegree(v)
updateDegree(w)
def contract(v):
"""Handle degree two vertex."""
u,w = avail[v] # find reps for two neighbors
d2edges.extend([avail[v][u],avail[v][w]])
del avail[u][v]
del avail[w][v]
if len(avail[u]) > len(avail[w]):
u,w = w,u # swap to preserve near-linear time bound
for x in avail[u].keys():
del avail[x][u]
if x in avail[w]:
updateDegree(x)
elif x != w:
avail[x][w] = avail[w][x] = avail[u][x]
avail[u] = avail[v] = {}
updateDegree(u)
updateDegree(v)
updateDegree(w)
# loop adding edges or contracting deg2 clusters
while avail:
if deg1:
v = arbitrary_item(deg1)
w = arbitrary_item(avail[v])
addMatch(v,w)
elif deg2:
v = arbitrary_item(deg2)
contract(v)
else:
v = arbitrary_item(avail)
w = arbitrary_item(avail[v])
addMatch(v,w)
# at this point the edges listed in d2edges form a matchable tree
# repeat the degree one part of the algorithm only on those edges
avail = {}
d2edges = [(u,v) for u,v in d2edges if u not in matching and v not in matching]
for u,v in d2edges:
avail[u] = {}
avail[v] = {}
for u,v in d2edges:
avail[u][v] = avail[v][u] = (u,v)
deg1 = {v for v in avail if len(avail[v]) == 1}
while deg1:
v = arbitrary_item(deg1)
w = arbitrary_item(avail[v])
addMatch(v,w)
return matching