-
Notifications
You must be signed in to change notification settings - Fork 109
/
Copy pathGraphWithWeights.kt
102 lines (85 loc) · 3.5 KB
/
GraphWithWeights.kt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
package structures
/**
*
* Graph is a non-linear data structure consisting of vertices and edges.
*
* The vertices are sometimes also referred to as nodes and the edges are lines or arcs that connect any two nodes in the graph.
*
* More formally a Graph is composed of a set of vertices V and a set of edges E. The graph is denoted by G(E, V).
*
* Directed graph with weights is a type of graph where the edges have specified direction and weights assigned to the them.
*
*/
class GraphWithWeights<T> {
private val data = linkedMapOf<Vertex<T>, MutableList<VertexConnection<T>>>()
// Complexity: O(1)
fun addVertex(value: T) {
data.putIfAbsent(Vertex(value), mutableListOf())
}
// Complexity: O(n)
fun removeVertex(value: T) {
val removingVertex = Vertex(value)
data.values.forEach { connections ->
connections.removeIf { it.vertex == removingVertex }
}
data.remove(removingVertex)
}
// Complexity: O(1)
fun addEdge(value1: T, value2: T, cost: Int) {
val vertex1 = Vertex(value1)
val vertex2 = Vertex(value2)
data[vertex1]?.add(VertexConnection(vertex2, cost))
}
// Complexity: O(n)
fun removeEdge(value1: T, value2: T) {
val vertex1 = Vertex(value1)
val vertex2 = Vertex(value2)
data[vertex1]?.removeIf { it.vertex == vertex2 }
}
// returns the associated vertices and their weights with the given vertex value
fun connectedVertexesWithWeights(value: T) = data[Vertex(value)]?.map { it.toString() } ?: emptyList()
/**
*
* Dijkstra's algorithm,
*
* returns pairs of a vertex and the minimum weight needed to get to that vertex,
*
* the starting vertex is the first added
*
*/
fun dijkstraAlgorithm(): Map<T, Int> {
if (data.isEmpty()) return emptyMap()
val unvisitedVertexes = linkedMapOf<Vertex<T>, Int>()
data.keys.forEach { vertex ->
unvisitedVertexes[vertex] = Int.MAX_VALUE
}
val visitedVertexes = linkedMapOf<T, Int>()
var minimumCost = 0
var currentVertex = unvisitedVertexes.keys.first()
while(unvisitedVertexes.isNotEmpty()) {
val neighbourVertexConnections = data[currentVertex] ?: emptyList()
for (neighbourVertexConnection in neighbourVertexConnections) {
val neighbourVertex = neighbourVertexConnection.vertex
if (!unvisitedVertexes.contains(neighbourVertex)) continue
val newCost = minimumCost + neighbourVertexConnection.cost
val neighbourVertexCost = unvisitedVertexes[neighbourVertex] ?: Int.MAX_VALUE
if (neighbourVertexCost > newCost) {
unvisitedVertexes[neighbourVertex] = newCost
}
}
visitedVertexes[currentVertex.value] = minimumCost
unvisitedVertexes.remove(currentVertex)
val nextUnvisitedEntry = unvisitedVertexes.entries
.filter { it.value != Int.MAX_VALUE }
.minByOrNull { it.value } ?: return visitedVertexes
currentVertex = nextUnvisitedEntry.key
minimumCost = nextUnvisitedEntry.value
}
return visitedVertexes
}
private data class Vertex<T>(val value: T)
// helper class for defining graph weights
private data class VertexConnection<T>(val vertex: Vertex<T>, val cost: Int) {
override fun toString(): String = "vertex -> ${vertex.value}, cost -> $cost"
}
}