-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathppo.py
189 lines (155 loc) · 5.35 KB
/
ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import gym
import torch
import numpy as np
from copy import deepcopy
from buffer import OnlineReplayBuffer
from net import GaussPolicyMLP
from critic import ValueLearner, QLearner
from utils import orthogonal_initWeights, log_prob_func
class ProximalPolicyOptimization:
_device: torch.device
_policy: GaussPolicyMLP
_optimizer: torch.optim
_policy_lr: float
_old_policy: GaussPolicyMLP
_scheduler: torch.optim
_clip_ratio: float
_entropy_weight: float
_decay: float
_omega: float
_batch_size: int
def __init__(
self,
device: torch.device,
state_dim: int,
hidden_dim: int,
depth: int,
action_dim: int,
policy_lr: float,
clip_ratio: float,
entropy_weight: float,
decay: float,
omega: float,
batch_size: int
) -> None:
super().__init__()
self._device = device
self._policy = GaussPolicyMLP(state_dim, hidden_dim, depth, action_dim).to(device)
orthogonal_initWeights(self._policy)
self._optimizer = torch.optim.Adam(
self._policy.parameters(),
lr=policy_lr
)
self._policy_lr = policy_lr
self._old_policy = deepcopy(self._policy)
self._scheduler = torch.optim.lr_scheduler.StepLR(
self._optimizer,
step_size=2,
gamma=0.98
)
self._clip_ratio = clip_ratio
self._entropy_weight = entropy_weight
self._decay = decay
self._omega = omega
self._batch_size = batch_size
def weighted_advantage(
self,
advantage: torch.Tensor
) -> torch.Tensor:
if self._omega == 0.5:
return advantage
else:
weight = torch.zeros_like(advantage)
index = torch.where(advantage > 0)[0]
weight[index] = self._omega
weight[torch.where(weight == 0)[0]] = 1 - self._omega
weight.to(self._device)
return weight * advantage
def loss(
self,
replay_buffer: OnlineReplayBuffer,
Q: QLearner,
value: ValueLearner,
is_clip_decay: bool,
) -> torch.Tensor:
# -------------------------------------Advantage-------------------------------------
s, a, _, _, _, _, _, advantage = replay_buffer.sample(self._batch_size)
old_dist = self._old_policy(s)
# -------------------------------------Advantage-------------------------------------
new_dist = self._policy(s)
new_log_prob = log_prob_func(new_dist, a)
old_log_prob = log_prob_func(old_dist, a)
ratio = (new_log_prob - old_log_prob).exp()
advantage = self.weighted_advantage(advantage)
loss1 = ratio * advantage
if is_clip_decay:
self._clip_ratio = self._clip_ratio * self._decay
else:
self._clip_ratio = self._clip_ratio
loss2 = torch.clamp(ratio, 1 - self._clip_ratio, 1 + self._clip_ratio) * advantage
entropy_loss = new_dist.entropy().sum(-1, keepdim=True) * self._entropy_weight
loss = -(torch.min(loss1, loss2) + entropy_loss).mean()
return loss
def update(
self,
replay_buffer: OnlineReplayBuffer,
Q: QLearner,
value: ValueLearner,
is_clip_decay: bool,
is_lr_decay: bool
) -> float:
policy_loss = self.loss(replay_buffer, Q, value, is_clip_decay)
self._optimizer.zero_grad()
policy_loss.backward()
torch.nn.utils.clip_grad_norm_(self._policy.parameters(), 0.5)
self._optimizer.step()
if is_lr_decay:
self._scheduler.step()
return policy_loss.item()
def select_action(
self, s: torch.Tensor, is_sample: bool
) -> torch.Tensor:
dist = self._policy(s)
if is_sample:
action = dist.sample()
else:
action = dist.mean
# clip
action = action.clamp(-1., 1.)
return action
def evaluate(
self,
env_name: str,
seed: int,
mean: np.ndarray,
std: np.ndarray,
eval_episodes: int=10
) -> float:
env = gym.make(env_name)
env.seed(seed)
total_reward = 0
for _ in range(eval_episodes):
s, done = env.reset(), False
while not done:
s = torch.FloatTensor((np.array(s).reshape(1, -1) - mean) / std).to(self._device)
a = self.select_action(s, is_sample=False).cpu().data.numpy().flatten()
s, r, done, _ = env.step(a)
total_reward += r
avg_reward = total_reward / eval_episodes
return avg_reward
def save(
self, path: str
) -> None:
torch.save(self._policy.state_dict(), path)
print('Policy parameters saved in {}'.format(path))
def load(
self, path: str
) -> None:
self._policy.load_state_dict(torch.load(path, map_location=self._device))
self._old_policy.load_state_dict(self._policy.state_dict())
#self._optimizer = torch.optim.Adam(self._policy.parameters(), lr=self._policy_lr)
print('Policy parameters loaded')
def set_old_policy(
self,
) -> None:
self._old_policy.load_state_dict(self._policy.state_dict())