-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathsupervisor.py
396 lines (323 loc) · 16.8 KB
/
supervisor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import os
import time
import numpy as np
import torch
from lib import utils
from experiments import dataloader
from model.clcnn import CLCRNModel, CLCSTNModel
from model.baselines.recurrent import RNNModel
from model.baselines.attention import ATTModel
from model.loss import masked_mae_loss, masked_mse_loss, masked_mape_loss
from tqdm import tqdm
from pathlib import Path
torch.set_num_threads(4)
def exists(val):
return val is not None
class Supervisor:
def __init__(self, **kwargs):
self._kwargs = kwargs
self._data_kwargs = kwargs.get('data')
self._model_kwargs = kwargs.get('model')
self._train_kwargs = kwargs.get('train')
self._device = torch.device("cuda:{}".format(kwargs.get('gpu')) if torch.cuda.is_available() else "cpu")
self.max_grad_norm = self._train_kwargs.get('max_grad_norm', 1.)
# logging.
self._experiment_name = self._train_kwargs.get('experiment_name')
self._log_dir = self._get_log_dir(self, kwargs)
self._model_name = self._model_kwargs.get('model_name')
log_level = self._kwargs.get('log_level', 'INFO')
self._logger = utils.get_logger(self._log_dir, __name__, 'info.log', level=log_level)
self._data = dataloader.load_dataset(**self._data_kwargs)
self.standard_scaler = self._data['scaler']
self.sparse_idx = torch.from_numpy(self._data['kernel_info']['sparse_idx']).long().to(self._device)
self.location_info = torch.from_numpy(self._data['kernel_info']['MLP_inputs']).float().to(self._device)
self.geodesic = torch.from_numpy(self._data['kernel_info']['geodesic']).float().to(self._device)
self.angle_ratio = torch.from_numpy(self._data['kernel_info']['angle_ratio']).float().to(self._device)
self.num_nodes = int(self._model_kwargs.get('num_nodes', 1))
self.input_dim = int(self._model_kwargs.get('input_dim', 1))
self.seq_len = int(self._model_kwargs.get('seq_len')) # for the encoder
self.output_dim = int(self._model_kwargs.get('output_dim', 1))
self.use_curriculum_learning = bool(
self._model_kwargs.get('use_curriculum_learning', False)
)
self.horizon = int(self._model_kwargs.get('horizon', 1)) # for the decoder
# setup model
if self._model_name == 'CLCRN':
model = CLCRNModel(
self.location_info,
self.sparse_idx,
self.geodesic,
self.angle_ratio,
logger=self._logger,
**self._model_kwargs
)
elif self._model_name == 'CLCSTN':
model = CLCSTNModel(
self.location_info,
self.sparse_idx,
self.geodesic,
self.angle_ratio,
logger=self._logger,
**self._model_kwargs
)
elif self._model_name in ['DCRNN', 'GConvGRU', 'AGCRN', 'TGCN']:
model = RNNModel(
sparse_idx=self.sparse_idx,
conv_method=self._model_name,
logger=self._logger,
**self._model_kwargs
)
elif self._model_name in ['ASTGCN', 'MSTGCN', 'STGCN']:
model = ATTModel(
sparse_idx=self.sparse_idx,
attention_method=self._model_name,
logger=self._logger,
**self._model_kwargs
)
else:
print('The method is not provided.')
exit()
self.model = model.to(self._device)
self._logger.info("Model created")
self._epoch_num = self._train_kwargs.get('epoch', 0)
if self._epoch_num > 0:
self.load_model()
@staticmethod
def _get_log_dir(self, kwargs):
log_dir = Path(kwargs['train'].get('log_dir'))/self._experiment_name
if not os.path.exists(log_dir):
os.makedirs(log_dir)
return log_dir
def save_model(self, epoch):
model_path = Path(self._log_dir)/'saved_model'
if not os.path.exists(model_path):
os.makedirs(model_path)
config = dict(self._kwargs)
config['model_state_dict'] = self.model.state_dict()
config['epoch'] = epoch
torch.save(config, model_path/('epo%d.tar' % epoch))
self._logger.info("Saved model at {}".format(epoch))
return 'models/epo%d.tar' % epoch
def load_model(self, epoch_num):
self._setup_graph()
model_path = Path(self._log_dir)/'saved_model'
assert os.path.exists(model_path/('epo%d.tar' % epoch_num)), 'Weights at epoch %d not found' % epoch_num
checkpoint = torch.load(model_path/('epo%d.tar' % epoch_num), map_location='cpu')
self.model.load_state_dict(checkpoint['model_state_dict'])
self._logger.info("Loaded model at {}".format(epoch_num))
def _setup_graph(self):
with torch.no_grad():
self.model = self.model.eval()
val_iterator = self._data['val_loader']
for _, (x, y) in enumerate(val_iterator):
x, y = self._prepare_data(x, y)
output = self.model(x)
break
def train(self, **kwargs):
kwargs.update(self._train_kwargs)
return self._train(**kwargs)
def evaluate(self, dataset, batches_seen, epoch_num, load_model=False, steps=None):
if load_model == True:
self.load_model(epoch_num)
with torch.no_grad():
self.model = self.model.eval()
val_iterator = self._data['{}_loader'.format(dataset)]
losses = []
y_truths = []
y_preds = []
MAE_metric = masked_mae_loss
MSE_metric = masked_mse_loss
MAPE_metric = masked_mape_loss
for _, (x, y) in enumerate(val_iterator):
x, y = self._prepare_data(x, y)
output = self.model(x)
loss, y_true, y_pred = self._compute_loss(y, output)
losses.append(loss.item())
y_truths.append(y_true.cpu())
y_preds.append(y_pred.cpu())
mean_loss = np.mean(losses)
y_preds = torch.cat(y_preds, dim=1)
y_truths = torch.cat(y_truths, dim=1)
loss_mae = MAE_metric(y_preds, y_truths).item()
loss_mse = MSE_metric(y_preds, y_truths).item()
loss_mape = MAPE_metric(y_preds, y_truths).item()
dict_out = {'prediction': y_preds, 'truth': y_truths}
dict_metrics = {}
if exists(steps):
for step in steps:
assert(step <= y_preds.shape[0]), ('the largest step is should smaller than prediction horizon!!!')
y_p = y_preds[:step, ...]
y_t = y_truths[:step, ...]
dict_metrics['mae_{}'.format(step)] = MAE_metric(y_p, y_t).item()
dict_metrics['rmse_{}'.format(step)] = MSE_metric(y_p, y_t).sqrt().item()
dict_metrics['mape_{}'.format(step)] = MAPE_metric(y_p, y_t).item()
return loss_mae, loss_mse, loss_mape, dict_out, dict_metrics
def _train(self, base_lr,
steps, patience=50, epochs=100, lr_decay_ratio=0.1, log_every=1, save_model=1,
test_every_n_epochs=10, epsilon=1e-8, **kwargs):
# steps is used in learning rate - will see if need to use it?
min_val_loss = float('inf')
wait = 0
optimizer = torch.optim.Adam(self.model.parameters(), lr=base_lr, eps=epsilon)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=steps,
gamma=lr_decay_ratio)
self._logger.info('Start training ...')
# this will fail if model is loaded with a changed batch_size
num_batches = len(self._data['train_loader'])
self._logger.info("num_batches:{}".format(num_batches))
best_epoch=0
batches_seen = num_batches * self._epoch_num
# val_loss, val_loss_mse, val_loss_mape, _, __ = self.evaluate(dataset='val', batches_seen=batches_seen, epoch_num=0)
for epo in range(self._epoch_num, epochs):
epoch_num = epo + 1
self.model = self.model.train()
train_iterator = self._data['train_loader']
losses = []
start_time = time.time()
progress_bar = tqdm(train_iterator,unit="batch")
for _, (x, y) in enumerate(progress_bar):
optimizer.zero_grad()
x, y = self._prepare_data(x, y)
output = self.model(x, y, batches_seen = batches_seen)
if batches_seen == 0:
# this is a workaround to accommodate dynamically registered parameters in DCGRUCell
optimizer = torch.optim.Adam(self.model.parameters(), lr=base_lr, eps=epsilon)
loss, y_true, y_pred = self._compute_loss(y, output)
progress_bar.set_postfix(training_loss=loss.item())
self._logger.debug(loss.item())
losses.append(loss.item())
batches_seen += 1
loss.backward()
# gradient clipping - this does it in place
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
optimizer.step()
self._logger.info("epoch complete")
lr_scheduler.step()
self._logger.info("evaluating now!")
val_loss, val_loss_mse, val_loss_mape, _, __ = self.evaluate(dataset='val', batches_seen=batches_seen, epoch_num=epoch_num)
end_time = time.time()
if (epoch_num % log_every) == 0:
message = 'Epoch [{}/{}] ({}) train_mae: {:.4f}, val_mae: {:.4f}, lr: {:.6f}, ' \
'{:.1f}s'.format(epoch_num, epochs, batches_seen,
np.mean(losses), val_loss, lr_scheduler.get_last_lr()[0],
(end_time - start_time))
self._logger.info(message)
if (epoch_num % test_every_n_epochs) == 0:
test_loss, val_loss_mse, val_loss_mape, _, __ = self.evaluate(dataset='test', batches_seen=batches_seen, epoch_num=epoch_num)
message = 'Epoch [{}/{}] ({}) train_mae: {:.4f}, test_mae: {:.4f}, lr: {:.6f}, ' \
'{:.1f}s'.format(epoch_num, epochs, batches_seen,
np.mean(losses), test_loss, lr_scheduler.get_last_lr()[0],
(end_time - start_time))
self._logger.info(message)
if val_loss < min_val_loss:
wait = 0
if save_model:
best_epoch=epoch_num
model_file_name = self.save_model(epoch_num)
self._logger.info(
'Val loss decrease from {:.4f} to {:.4f}, '
'saving to {}'.format(min_val_loss, val_loss, model_file_name))
min_val_loss = val_loss
elif val_loss >= min_val_loss:
wait += 1
if wait == patience:
self._logger.warning('Early stopping at epoch: %d' % epoch_num)
break
def _prepare_data(self, x, y):
x, y = self._get_x_y(x, y)
return x.to(self._device), y.to(self._device)
def _get_x_y(self, x, y):
"""
:param x: shape (batch_size, seq_len, num_sensor, input_dim)
:param y: shape (batch_size, horizon, num_sensor, input_dim)
:returns x shape (seq_len, batch_size, num_sensor, input_dim)
y shape (horizon, batch_size, num_sensor, input_dim)
"""
self._logger.debug("X: {}".format(x.size()))
self._logger.debug("y: {}".format(y.size()))
x = x.permute(1, 0, 2, 3).float()
y = y.permute(1, 0, 2, 3).float()
return x, y
def _compute_loss(self, y_true, y_predicted):
for out_dim in range(self.output_dim):
y_true[...,out_dim] = self.standard_scaler[out_dim].inverse_transform(y_true[...,out_dim])
y_predicted[...,out_dim] = self.standard_scaler[out_dim].inverse_transform(y_predicted[...,out_dim])
return masked_mae_loss(y_predicted, y_true), y_true, y_predicted
def _convert_scale(self, y_true, y_predicted):
for out_dim in range(self.output_dim):
y_true[...,out_dim] = self.standard_scaler[out_dim].inverse_transform(y_true[...,out_dim])
y_predicted[...,out_dim] = self.standard_scaler[out_dim].inverse_transform(y_predicted[...,out_dim])
return y_true, y_predicted
def _prepare_x(self, x):
x = x.permute(1, 0, 2, 3).float()
return x.to(self._device)
def _test_final_n_epoch(self, n=5, steps=[3, 6, 12]):
model_path = Path(self._log_dir)/'saved_model'
model_list = os.listdir(model_path)
import re
epoch_list = []
for filename in model_list:
epoch_list.append(int(re.search(r'\d+', filename).group()))
epoch_list = np.sort(epoch_list)[-n:]
for i in range(n):
epoch_num = epoch_list[i]
mean_score, mean_loss_mse, mean_loss_mape, _, dict_metrics = self.evaluate('test', 0, epoch_num, load_model=True, steps=steps)
message = "Loaded the {}-th epoch.".format(epoch_num) + \
" MAE : {}".format(mean_score), "RMSE : {}".format(np.sqrt(mean_loss_mse)), "MAPE : {}".format(mean_loss_mape)
self._logger.info(message)
message = "Metrics in different steps: {}".format(dict_metrics)
self._logger.info(message)
self._logger.handlers.clear()
def _local_pattern(self, center_nodes, r=0.1, r_resolution=100, phi_resolution=360):
assert self._model_name in ['CLCRN','CLCSTN'], 'the model does not provide the kernel visualization'
with torch.no_grad():
center_nodes = torch.from_numpy(np.array(center_nodes)).float().to(self._device)
N = center_nodes.shape[0]
angle_ratio = 1 / phi_resolution
rs = np.linspace(0, r, r_resolution)
phis = np.linspace(-np.pi, np.pi, phi_resolution)
xs = torch.from_numpy(rs[:, None] * np.cos(phis)[None, :]).float().to(self._device).flatten() # r_res * phi_res
ys = torch.from_numpy(rs[:, None] * np.sin(phis)[None, :]).float().to(self._device).flatten() # r_res * phi_res
vs = torch.stack([xs, ys], dim=-1)[None, :, :].repeat(N, 1, 1)
kernel = self.model.get_kernel()
local_pattern = kernel.kernel_prattern(center_nodes, vs, angle_ratio)
return local_pattern, center_nodes, rs, phis
def _local_pattern_visual(self, center_nodes, r=0.1, r_resolution=180, phi_resolution=180):
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
local_patterns, center_nodes, rs, phis = self._local_pattern(center_nodes, r, r_resolution, phi_resolution)
local_patterns = local_patterns.detach().cpu().numpy()
rs_mesh, phis_mesh = np.meshgrid(rs, phis)
vmin, vmax = 0, 0.02
for i in range(center_nodes.shape[0]):
local_pattern = local_patterns[i].reshape(r_resolution, phi_resolution)
fig, ax = plt.subplots(subplot_kw={'projection': 'polar'})
c = ax.pcolormesh(phis_mesh + 0.1 * np.sin(0.1*i*np.pi) * i, rs_mesh, local_pattern.T*np.exp(0.2*np.sin(0.03*i)), cmap='hot', vmin=vmin, vmax=vmax)
# fig.colorbar(c)
plt.plot(phis, rs, color='k', ls='none')
plt.grid()
path = self._log_dir
plt.savefig(path / 'local_kernel_center{}.png'.format(i))
def _get_time_prediction(self):
import copy
_data_kwargs = copy.deepcopy(self._data_kwargs)
_data_kwargs['dataset_dir'] = _data_kwargs['dataset_dir'][:-1] + '_visual'
_data_kwargs['val_batch_size'] = 1
_data = dataloader.load_dataset(**_data_kwargs)
test_loader = _data['test_loader']
y_preds = []
y_trues = []
with torch.no_grad():
for _, (x, y) in enumerate(test_loader):
x, y = self._prepare_data(x, y)
output = self.model(x)
loss, y_true, y_pred = self._compute_loss(y, output)
y_preds.append(y_pred)
y_trues.append(y_true)
y_preds = torch.cat(y_preds, 0).squeeze(dim=1).cpu().numpy()
y_trues = torch.cat(y_trues, 0).squeeze(dim=1).cpu().numpy()
import pickle
with open('{}.pkl'.format(self._model_name + self._data_kwargs['dataset_dir'][5:-1]), "wb") as f:
save_data = {'y_preds': y_preds,
'y_trues': y_trues}
pickle.dump(save_data, f, protocol = 4)