-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathinterpolation.F90
677 lines (523 loc) · 21.4 KB
/
interpolation.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
!-------------------------------------------------------------------------------
!$Id$
!===============================================================================
module interpolation
use clubb_precision, only: &
core_rknd ! Variable(s)
implicit none
private ! Default Scope
public :: lin_interpolate_two_points, binary_search, zlinterp_fnc, &
lin_interpolate_on_grid, linear_interp_factor, mono_cubic_interp, plinterp_fnc, &
pvertinterp
contains
!-------------------------------------------------------------------------------
function lin_interpolate_two_points( height_int, height_high, height_low, &
var_high, var_low )
! Description:
! This function computes a linear interpolation of the value of variable.
! Given two known values of a variable at two height values, the value
! of that variable at a height between those two height levels (rather
! than a height outside of those two height levels) is computed.
!
! Here is a diagram:
!
! ################################ Height high, know variable value
!
!
!
! -------------------------------- Height to be interpolated to; linear interpolation
!
!
!
!
!
! ################################ Height low, know variable value
!
!
! FORMULA:
!
! variable(@ Height interpolation) =
!
! [ (variable(@ Height high) - variable(@ Height low)) / (Height high - Height low) ]
! * (Height interpolation - Height low) + variable(@ Height low)
! Comments from WRF-HOC, Brian Griffin.
! References:
! None
!-------------------------------------------------------------------------------
use clubb_precision, only: &
core_rknd ! Variable(s)
use constants_clubb, only: fstderr ! Constant
implicit none
! Input Variables
real( kind = core_rknd ), intent(in) :: &
height_int, & ! Height to be interpolated to [m]
height_high, & ! Height above the interpolation [m]
height_low, & ! Height below the interpolation [m]
var_high, & ! Variable above the interpolation [units vary]
var_low ! Variable below the interpolation [units vary]
! Output Variables
real( kind = core_rknd ) :: lin_interpolate_two_points
! Check for valid input
if ( abs(height_low - height_high) < 1.0e-12_core_rknd ) then
write(fstderr,*) "lin_interpolate_two_points: height_high and height_low cannot be equal."
stop
end if
! Compute linear interpolation
lin_interpolate_two_points = ( ( height_int - height_low )/( height_high - height_low ) ) &
* ( var_high - var_low ) + var_low
return
end function lin_interpolate_two_points
!-------------------------------------------------------------------------------------------------
elemental real( kind = core_rknd ) function linear_interp_factor( factor, var_high, var_low )
! Description:
! Determines the coefficient for a linear interpolation
!
! References:
! None
!-------------------------------------------------------------------------------------------------
use clubb_precision, only: &
core_rknd ! Variable(s)
implicit none
real( kind = core_rknd ), intent(in) :: &
factor, & ! Factor [units vary]
var_high, & ! Variable above the interpolation [units vary]
var_low ! Variable below the interpolation [units vary]
linear_interp_factor = factor * ( var_high - var_low ) + var_low
return
end function linear_interp_factor
!-------------------------------------------------------------------------------------------------
function mono_cubic_interp &
( z_in, km1, k00, kp1, kp2, zm1, z00, zp1, zp2, fm1, f00, fp1, fp2 ) result ( f_out )
! Description:
! Steffen's monotone cubic interpolation method
! Returns monotone cubic interpolated value between x00 and xp1
! Original Author:
! Takanobu Yamaguchi
!
! This version has been modified slightly for CLUBB's coding standards and
! adds the 3/2 from eqn 21. -dschanen 26 Oct 2011
! We have also added a quintic polynomial option.
!
! References:
! M. Steffen, Astron. Astrophys. 239, 443-450 (1990)
!-------------------------------------------------------------------------------------------------
use constants_clubb, only: &
three_halves, & ! Constant(s)
eps
use clubb_precision, only: &
core_rknd ! Constant
use model_flags, only: &
l_quintic_poly_interp ! Variable(s)
implicit none
! Constant Parameters
logical, parameter :: &
l_equation_21 = .true.
! External
intrinsic :: sign, abs, min
! Input Variables
real( kind = core_rknd ), intent(in) :: &
z_in ! The altitude to be interpolated to [m]
! k-levels; their meaning depends on whether we're extrapolating or interpolating
integer, intent(in) :: &
km1, k00, kp1, kp2
real( kind = core_rknd ), intent(in) :: &
zm1, z00, zp1, zp2, & ! The altitudes for km1, k00, kp1, kp2 [m]
fm1, f00, fp1, fp2 ! The field at km1, k00, kp1, and kp2 [units vary]
! Output Variables
real( kind = core_rknd ) :: f_out ! The interpolated field
! Local Variables
real( kind = core_rknd ) :: &
hm1, h00, hp1, &
sm1, s00, sp1, &
p00, pp1, &
dfdx00, dfdxp1, &
c1, c2, c3, c4, &
w00, wp1, &
coef1, coef2, &
zprime, beta, alpha, zn
! ---- Begin Code ----
if ( l_equation_21 ) then
! Use the formula from Steffen (1990), which should make the interpolation
! less restrictive
coef1 = three_halves
coef2 = 1.0_core_rknd/three_halves
else
coef1 = 1.0_core_rknd
coef2 = 1.0_core_rknd
end if
if ( km1 <= k00 ) then
hm1 = z00 - zm1
h00 = zp1 - z00
hp1 = zp2 - zp1
if ( km1 == k00 ) then
s00 = ( fp1 - f00 ) / ( zp1 - z00 )
sp1 = ( fp2 - fp1 ) / ( zp2 - zp1 )
dfdx00 = s00
pp1 = ( s00 * hp1 + sp1 * h00 ) / ( h00 + hp1 )
dfdxp1 = coef1*( sign( 1.0_core_rknd, s00 ) + sign( 1.0_core_rknd, sp1 ) ) &
* min( abs( s00 ), abs( sp1 ), coef2*0.5_core_rknd*abs( pp1 ) )
else if ( kp1 == kp2 ) then
sm1 = ( f00 - fm1 ) / ( z00 - zm1 )
s00 = ( fp1 - f00 ) / ( zp1 - z00 )
p00 = ( sm1 * h00 + s00 * hm1 ) / ( hm1 + h00 )
dfdx00 = coef1*( sign( 1.0_core_rknd, sm1 ) + sign( 1.0_core_rknd, s00 ) ) &
* min( abs( sm1 ), abs( s00 ), coef2*0.5_core_rknd*abs( p00 ) )
dfdxp1 = s00
else
sm1 = ( f00 - fm1 ) / ( z00 - zm1 )
s00 = ( fp1 - f00 ) / ( zp1 - z00 )
sp1 = ( fp2 - fp1 ) / ( zp2 - zp1 )
p00 = ( sm1 * h00 + s00 * hm1 ) / ( hm1 + h00 )
pp1 = ( s00 * hp1 + sp1 * h00 ) / ( h00 + hp1 )
dfdx00 = coef1*( sign( 1.0_core_rknd, sm1 ) + sign( 1.0_core_rknd, s00 ) ) &
* min( abs( sm1 ), abs( s00 ), coef2*0.5_core_rknd*abs( p00 ) )
dfdxp1 = coef1*( sign( 1.0_core_rknd, s00 ) + sign( 1.0_core_rknd, sp1 ) ) &
* min( abs( s00 ), abs( sp1 ), coef2*0.5_core_rknd*abs( pp1 ) )
end if
c1 = ( dfdx00 + dfdxp1 - 2._core_rknd * s00 ) / ( h00 ** 2 )
c2 = ( 3._core_rknd * s00 - 2._core_rknd * dfdx00 - dfdxp1 ) / h00
c3 = dfdx00
c4 = f00
if ( .not. l_quintic_poly_interp ) then
! Old formula
!f_out = c1 * ( (z_in - z00)**3 ) + c2 * ( (z_in - z00)**2 ) + c3 * (z_in - z00) + c4
! Faster nested multiplication
zprime = z_in - z00
f_out = c4 + zprime*( c3 + zprime*( c2 + ( zprime*c1 ) ) )
else
! Use a quintic polynomial interpolation instead instead of the Steffen formula.
! Unlike the formula above, this formula does not guarantee monotonicity.
beta = 120._core_rknd * ( (fp1-f00) - 0.5_core_rknd * h00 * (dfdx00 + dfdxp1) )
! Prevent an underflow by using a linear interpolation
if ( abs( beta ) < eps ) then
f_out = lin_interpolate_two_points( z00, zp1, zm1, &
fp1, fm1 )
else
alpha = (6._core_rknd/beta) * h00 * (dfdxp1-dfdx00) + 0.5_core_rknd
zn = (z_in-z00)/h00
f_out = ( &
(( (beta/20._core_rknd)*zn - (beta*(1._core_rknd+alpha) &
/ 12._core_rknd)) * zn + (beta*alpha/6._core_rknd)) &
* zn**2 + dfdx00*h00 &
) * zn + f00
end if ! beta < eps
end if ! ~quintic_polynomial
else
! Linear extrapolation
wp1 = ( z_in - z00 ) / ( zp1 - z00 )
w00 = 1._core_rknd - wp1
f_out = wp1 * fp1 + w00 * f00
end if
return
end function mono_cubic_interp
!-------------------------------------------------------------------------------
integer function binary_search( n, array, var ) &
result( i )
! Description:
! This subroutine performs a binary search to find the closest value greater
! than or equal to var in the array. This function returns the index of the
! closest value of array that is greater than or equal to var. It returns a
! value of -1 if var is outside the bounds of array.
!
!-----------------------------------------------------------------------
use clubb_precision, only: &
core_rknd ! Variable(s)
use constants_clubb, only: &
fstderr ! Variable(s)
use error_code, only: &
clubb_at_least_debug_level ! Error indicator
implicit none
! Input Variables
! Size of the array
integer, intent(in) :: n
! The array being searched (must be sorted from least value to greatest
! value).
real( kind = core_rknd ), dimension(n), intent(in) :: array
! The value being searched for
real( kind = core_rknd ), intent(in) :: var
! Bounds of the search
integer :: high
integer :: low
! The initial value of low has been changed from 1 to 2 due to a problem
! that was occuring when var was close to the lower bound.
!
! The lowest value in the array (which is sorted by increasing values) is
! found at index 1, while the highest value in the array is found at
! index n. Unless the value of var exactly corresponds with one of the
! values found in the array, or unless the value of var is found outside of
! the array, the value of var will be found between two levels of the array.
! In this scenario, the output of function binary_search is the index of the
! HIGHER level. For example, if the value of var is found between array(1)
! and array(2), the output of function binary_search will be 2.
!
! Therefore, the lowest index of a HIGHER level in an interpolation is 2.
! Thus, the initial value of low has been changed to 2. This will prevent
! the value of variable "i" below from becoming 1. If the value of "i"
! becomes 1, the code below tries to access array(0) (which is array(i-1)
! when i = 1) and produces an error.
low = 2
high = n
! Ensure variable is within range of array and array has more than 1 element
if ( var < array(1) .or. var > array(n) .or. n < 2 ) then
i = -1
return
end if
! Special case to cover var == array(1)
if ( var >= array(1) .and. var <= array(2) ) then
i = 2
return
end if
do while( low <= high )
i = (low + high) / 2
if ( var > array(i-1) .and. var <= array(i) ) then
return
elseif ( var < array(i) ) then
high = i - 1
elseif ( var > array(i) ) then
low = i + 1
endif
enddo
! Code should not get to this point, but return -1 to be safe
if ( clubb_at_least_debug_level( 0 ) ) then
write(fstderr,*) "Logic error in function binary_search."
end if
i = -1
return
end function binary_search
!-------------------------------------------------------------------------------
function plinterp_fnc( dim_out, dim_src, grid_out, &
grid_src, var_src ) &
result( var_out )
! Description:
! Do a linear interpolation in the vertical with pressures. Assumes
! values that are less than lowest source point are zero and above the
! highest source point are zero. Also assumes altitude increases linearly.
! This function just calls zlinterp_fnc, but negates grid_out and grid_src.
! References:
! function LIN_INT from WRF-HOC
!-----------------------------------------------------------------------
use clubb_precision, only: &
core_rknd ! Variable(s)
implicit none
! Input variables
integer, intent(in) :: dim_out, dim_src
real( kind = core_rknd ), dimension(dim_src), intent(in) :: &
grid_src, & ! [m]
var_src ! [units vary]
real( kind = core_rknd ), dimension(dim_out), intent(in) :: &
grid_out ! [m]
! Output variable
real( kind = core_rknd ), dimension(dim_out) :: &
var_out ! [units vary]
! ---- Begin Code ----
var_out = zlinterp_fnc( dim_out, dim_src, -grid_out, &
-grid_src, var_src )
return
end function plinterp_fnc
!-------------------------------------------------------------------------------
function zlinterp_fnc( dim_out, dim_src, grid_out, &
grid_src, var_src ) &
result( var_out )
! Description:
! Do a linear interpolation in the vertical. Assumes values that
! are less than lowest source point are zero and above the highest
! source point are zero. Also assumes altitude increases linearly.
! References:
! function LIN_INT from WRF-HOC
!-----------------------------------------------------------------------
use clubb_precision, only: &
core_rknd ! Variable(s)
implicit none
! Input variables
integer, intent(in) :: dim_out, dim_src
real( kind = core_rknd ), dimension(dim_src), intent(in) :: &
grid_src, & ! [m]
var_src ! [units vary]
real( kind = core_rknd ), dimension(dim_out), intent(in) :: &
grid_out ! [m]
! Output variable
real( kind = core_rknd ), dimension(dim_out) :: &
var_out ! [units vary]
! Local variables
integer :: k, kint, km1
! integer :: tst, kp1
! ---- Begin Code ----
k = 1
do kint = 1, dim_out, 1
! Set to 0 if we're below the input data's lowest point
if ( grid_out(kint) < grid_src(1) ) then
var_out(kint) = 0.0_core_rknd
cycle
end if
! Increment k until the level is correct
! do while ( grid_out(kint) > grid_src(k)
! . .and. k < dim_src )
! k = k + 1
! end do
! Changed so a binary search is used instead of a sequential search
! tst = binary_search(dim_src, grid_src, grid_out(kint))
k = binary_search(dim_src, grid_src, grid_out(kint))
! Joshua Fasching April 2008
! print *, "k = ", k
! print *, "tst = ", tst
! print *, "dim_src = ", dim_src
! print *,"------------------------------"
! If the increment leads to a level above the data, set this
! point and all those above it to zero
!if( k > dim_src ) then
if ( k == -1 ) then
var_out(kint:dim_out) = 0.0_core_rknd
exit
end if
km1 = max( 1, k-1 )
!kp1 = min( k+1, dim_src )
! Interpolate
var_out(kint) = lin_interpolate_two_points( grid_out(kint), grid_src(k), &
grid_src(km1), var_src(k), var_src(km1) )
! ( var_src(k) - var_src(km1) ) / &
! ( grid_src(k) - grid_src(km1) ) &
! * ( grid_out(kint) - grid_src(km1) ) + var_src(km1) &
! Changed to use a standard function for interpolation
!! Note this ends up changing the results slightly because
!the placement of variables has been changed.
! Joshua Fasching April 2008
end do ! kint = 1..dim_out
return
end function zlinterp_fnc
!-------------------------------------------------------------------------------
subroutine pvertinterp &
( nlev, pmid, pout, arrin, arrout )
implicit none
!------------------------------Arguments--------------------------------
integer , intent(in) :: nlev ! vertical dimension
real( kind = core_rknd ), intent(in) :: pmid(nlev) ! input level pressure levels
real( kind = core_rknd ), intent(in) :: pout ! output pressure level
real( kind = core_rknd ), intent(in) :: arrin(nlev) ! input array
real( kind = core_rknd ), intent(out) :: arrout ! output array (interpolated)
!---------------------------Local variables-----------------------------
integer :: k ! indices
integer :: kupper ! Level indices for interpolation
real( kind = core_rknd ) :: dpu ! upper level pressure difference
real( kind = core_rknd ) :: dpl ! lower level pressure difference
logical :: found ! true if input levels found
logical :: error ! true if error
!-----------------------------------------------------------------
!
! Initialize index array and logical flags
!
found = .false.
kupper = 1
error = .false.
!
! Store level indices for interpolation.
! If all indices for this level have been found,
! do the interpolation
!
do k=1,nlev-1
if ((.not. found) .and. pmid(k)>pout .and. pout>=pmid(k+1)) then
found = .true.
kupper = k
end if
end do
!
! If we've fallen through the k=1,nlev-1 loop, we cannot interpolate and
! must extrapolate from the bottom or top data level for at least some
! of the longitude points.
!
if (pout >= pmid(1)) then
arrout = arrin(1)
else if (pout <= pmid(nlev)) then
arrout = arrin(nlev)
else if (found) then
dpu = pmid(kupper) - pout
dpl = pout - pmid(kupper+1)
arrout = (arrin(kupper)*dpl + arrin(kupper+1)*dpu)/(dpl + dpu)
else
error = .true.
end if
return
end subroutine pvertinterp
!-------------------------------------------------------------------------------
subroutine lin_interpolate_on_grid &
( nparam, xlist, tlist, xvalue, tvalue )
! Description:
! Linear interpolation for 25 June 1996 altocumulus case.
! For example, to interpolate between two temperatures in space, put
! your spatial coordinates in x-list and your temperature values in
! tlist. The point in question should have its spatial value stored
! in xvalue, and tvalue will be the temperature at that point.
! Author: Michael Falk for COAMPS.
!-------------------------------------------------------------------------------
use constants_clubb, only: fstderr ! Constant
use clubb_precision, only: &
core_rknd ! Variable(s)
use error_code, only: &
clubb_at_least_debug_level ! Error indicator
implicit none
! Input Variables
integer, intent(in) :: nparam ! Number of parameters in xlist and tlist
! Input/Output Variables
real( kind = core_rknd ), intent(inout), dimension(nparam) :: &
xlist, & ! List of x-values (independent variable)
tlist ! List of t-values (dependent variable)
real( kind = core_rknd ), intent(in) :: &
xvalue ! x-value at which to interpolate
real( kind = core_rknd ), intent(inout) :: &
tvalue ! t-value solved by interpolation
! Local variables
integer :: &
i ! Loop control variable
integer :: &
bottombound, & ! Index of the smaller value in the linear interpolation
topbound ! Index of the larger value in the linear interpolation
!-------------------------------------------------------------------------------
!
! Assure that the elements are in order so that the interpolation is between
! the two closest points to the point in question.
!
!-------------------------------------------------------------------------------
if ( clubb_at_least_debug_level( 0 ) ) then
do i=2,nparam
if ( xlist(i) <= xlist(i-1) ) then
write(fstderr,*) "xlist must be sorted for lin_interpolate_on_grid."
stop
end if
end do
end if
!-------------------------------------------------------------------------------
!
! If the point in question is larger than the largest x-value or
! smaller than the smallest x-value, crash.
!
!-------------------------------------------------------------------------------
if ( clubb_at_least_debug_level( 0 ) ) then
if ( (xvalue < xlist(1)) .or. (xvalue > xlist(nparam)) ) then
write(fstderr,*) "lin_interpolate_on_grid: Value out of range"
stop
end if
end if
!-------------------------------------------------------------------------------
!
! Find the correct top and bottom bounds, do the interpolation, return c
! the value.
!
!-------------------------------------------------------------------------------
topbound = -1
bottombound = -1
do i=2,nparam
if ( (xvalue >= xlist(i-1)) .and. (xvalue <= xlist(i)) ) then
bottombound = i-1
topbound = i
end if
end do
if ( clubb_at_least_debug_level( 1 ) .and. (topbound == -1 .or. bottombound == -1) ) then
write(fstderr,*) "Sanity check failed! xlist is not properly sorted"
write(fstderr,*) "in lin_interpolate_on_grid."
end if
tvalue = &
lin_interpolate_two_points( xvalue, xlist(topbound), xlist(bottombound), &
tlist(topbound), tlist(bottombound) )
return
end subroutine lin_interpolate_on_grid
end module interpolation