-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrepositories.Rmd
305 lines (242 loc) · 29.5 KB
/
repositories.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
---
title: "Repositories"
description: ""
output:
distill::distill_article:
toc: true
toc_depth: 3
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE)
```
<ul class="card-wrapper">
<li class="card-repo">
<img class="card-repo-img" src='img/repo/alexiou_2024_wildl_biol.jpg' alt='Figure 1: Study area map of Nakai-Nam Theun National Park, Laos. Camera trapping was conducted in three different biodiversity management zones between February to August 2020. Cameras were placed on the field using a 2.5 km grid.'>
<h3>Alexiou et al. 2024</h3>
<p>Multi-species occupancy modeling of ground-dwelling mammals in central Laos: a case study for monitoring in tropical forests. *WILDL BIOL*, e01261.</p><p>
<a href='https://doi.org/10.1002/wlb3.01261'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Alexiou_2024_WILDL-BIOL'>![](img/repo/icon-github.png){width=12%}</a></p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/axtner_2019.png' alt='Figure 1 of Axtner et al. 2019: A schematic illustration of the laboratory workflow.'>
<h3>Axtner et al. 2019</h3>
<p>An efficient and robust laboratory workflow and tetrapod database for larger scale environmental DNA studies. *GIGASCIENCE*, 8:giz029.</p><p>
<a href='https://doi.org/10.1093/gigascience/giz029'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Axtner_2019_GigaScience'>![](img/repo/icon-github.png){width=12%}</a></p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/benhaiem_2018.png' alt='Figure 5 of Benhaiem et al. 2018: projected (1990–2010) and predicted (2010–2020) abundances of female hyenas based on the full model (pink) and a model without social structure (blue).'>
<h3>Benhaiem et al. 2018</h3>
<p>Slow recovery from a disease epidemic in the spotted hyena, a keystone social carnivore. *COMMUN BIOL*, 1:201.</p><p>
<a href='https://doi.org/10.1038/s42003-018-0197-1'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Benhaiem_2018_CommsBio'>![](img/repo/icon-github.png){width=12%}</a></p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/calderon_2022.png' alt='Overview scheme of the workflow used in Calderon et al. 2022: The occupancy modelling, explanatory variables, the predicted habitat use and finally conservation actions.'>
<h3>Calderon et al. 2022</h3>
<p>Occupancy models reveal potential of conservation prioritization for Central American jaguars. *ANIM CONSERV*.</p><p>
<a href='https://doi.org/10.1111/acv.12772'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Calderon_2022_AnimCons'>![](img/repo/icon-github.png){width=12%}</a></p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/caro_2023.jpg' alt='Meta- and subpopulation estimation with disparate data: coconut crabs in the Western Indian Ocean.'>
<h3>Caro et al. 2023</h3>
<p>Meta- and subpopulation estimation with disparate data: coconut crabs in the Western Indian Ocean. *ANIM CONSERV*.</p><p>
<a href='https://doi.org/10.1111/acv.12896'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Coconut-crabs'>![](img/repo/icon-github.png){width=12%}</a>
<a href='https://zenodo.org/record/8153309'>![](img/repo/icon-zenodo.png){width=12%}</a></p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/dalleau_2019.png' alt='Figure 2 of Dalleau et al. 2019: Overview of the SWIO landscape (eastern coast of the African continent with Madagascar shown central in the map) with black pentagons represent nesting sites.'>
<h3>Dalleau et al. 2019</h3>
<p>Modeling the emergence of migratory corridors and foraging hot spots of the green sea turtle. *ECOL EVOL*, 9:10317–1034.</p><p>
<a href='https://doi.org/10.1002/ece3.5552'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://www.comses.net/codebases/69863caa-2f8e-4412-a564-a2826d9d38d3/releases/1.0.0/'>![](img/repo/icon-comses.png){width=12%}</a></p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/danabalan_2023.png' alt='Figure 1 of Danabalan et al. 2023: Sampling sites in Berlin with one example of fly trap used in the study in the top left corner. Orange circles denote collection sites of both flies and mosquitoes, red circle indicates collection of bloodfed mosquitoes only, and gray triangles indicate fly detection locations used by Hoffman et al. (2018)'>
<h3>Danabalan et al. 2023</h3>
<p>Comparison of mosquito and fly derived DNA as a tool for sampling vertebrate biodiversity in suburban forests in Berlin, Germany. *ENVIRON DNA*.</p><p>
<a href='https://doi.org/10.1002/edn3.398'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Danabalan_Planillo_2023_eDNA'>![](img/repo/icon-github.png){width=12%}</a>
<a href='https://doi.org/10.5061/dryad.xsj3tx9j8'>![](img/repo/icon-dryad.png){width=12%}</a> </p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/drenske_2023.png' alt='Figure 1b of Drenske et al. 2023: study site of Northern Bald Ibis in Europe with two already established breeding sites (pink) in Burghausen (Bavaria, Germany) and Kuchl (State of Salzburg, Austria) and new colonies in Ueberlingen (Baden-Württemberg, Germany; pink) and Rosegg (Kärnten, Austria) with released NBI. The common wintering ground is the WWF Oasi Laguna di Orbetello in Tuscany, Italy (blue).'>
<h3>Drenske et al. 2023</h3>
<p>On the road to self-sustainability: reintroduced migratory European northern bald ibises *Geronticus eremita* still need management interventions for population viability. *ORYX*, 1-12.</p><p>
<a href='https://doi.org/10.1017/S0030605322000540'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Drenske_2023_Oryx'>![](img/repo/icon-github.png){width=12%}</a>
<a href='https://doi.org/10.5281/zenodo.6790671'>![](img/repo/icon-zenodo.png){width=12%}</a>
<a href='https://www.comses.net/codebases/f021a012-1507-417f-88ad-d181914219d1/releases/1.0.0/'>![](img/repo/icon-comses.png){width=12%}</a></p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/drenske_2024.jpg' alt='Figure 2 of Drenske et al. 2024: (A) Study area in Berlin, Germany, and locations of the camera traps (stations) in each of the project phases included in the study. (B) Comparison of the activity of cats and squirrels during all project phases. (C) Comparison of the activity of martens and squirrels during all project phases. (D) Comparison of the activity of squirrels in spring with and without lockdown. (E) Comparison of the activity of squirrels in autumn with and without lockdown. Shaded areas represent activity overlap.'>
<h3>Drenske et al. 2024</h3>
<p>Human and predator presence shape diel activity of urban red squirrels. *FRONT ECOL EVOL*, 12:1455142.</p><p>
<a href='https://doi.org/10.3389/fevo.2024.1455142'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Drenske_2024_FrontEcolEvol'>![](img/repo/icon-github.png){width=12%}</a></p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/grabow_2022.png' alt='Figure 5 of Grabow et al. 2022: Ccmparison of the single distribution models for red squirrels in Berlin, showing predicted models (left) and differences between reference model and respective model (right).' width="300">
<h3>Grabow et al. 2022</h3>
<p>Data-integration of opportunistic species observations into hierarchical modeling frameworks improves spatial predictions for urban red squirrels. *FRONT ECOL EVOL*, 10:881247.</p><p>
<a href='https://dx.doi.org/10.3389/fevo.2022.881247'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Grabow_2022_FrontEcolEvol'>![](img/repo/icon-github.png){width=12%}</a></p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/grabow_2024.png' alt='Figure 1 of Grabow et al. 2024: Centre panel: Main hypothesis: Parasites alter resource allocation in their hosts, leading to changes in such plastic traits as morphological traits and movement behaviour, with potential consequences for demography. a Capturing method for birds: Mist netting using a structured sampling design with equal sampling effort. b Scheme of Capture-mark-recapture (CMR) design, including multiple observations (obs.) across years t, when blood samples were collected and analysed via polymerase chain reaction for blood parasite infection. In case of non-recaptures (see example at t + 2) no blood samples would be collected. c Barn swallow (BS) tagged during CMR with lightweight ATLAS tag (0.125 Hz) for movement analyses. d Exemplary movement tracks (Supplementary movie S1), analyses of movement behavioural states (foraging, commuting, and resting via Hidden-Markov model; HMM), and habitat selection examples during foraging (via integrated Step-Selection function, iSSF). e Morphological traits of barn swallows (BS) and house martins (HM) measured during the CMR. f Schematic representation of multi-event model for analysing survival by accounting for uncertainty in blood parasite (BP) infection status; BP+, BP-, and D (round circles) describe the true state of each individual, namely infected with BP, non-infected, and dead, respectively. Transitions between BP+ and BP- are explained as survival (Φ) and state transition (), or death (1- Φ). Observations (pBP+ and pBP-) differ between infected and non-infected individuals, dead individuals are never captured. Infection status of subclinical infection can only be revealed by polymerase chain reaction, i.e. the testing probability (βTest).' width="300">
<h3>Grabow et al. 2024</h3>
<p>Sick without signs. Subclinical infections reduce local movements, alter habitat selection, and cause demographic shifts. *COMMUN BIOL*, 7, 1426.</p><p>
<a href='https://doi.org/10.1038/s42003-024-07114-4'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Grabow_2024_COMMSBIOL'>![](img/repo/icon-github.png){width=12%}</a></p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/kuerschner_2021.png' alt='Figure 2 of Kuerschner et al. 2021: a heatmap showing coexistence probability estimated as the proportion of simulation runs in which both host and pathogen survived (color gradient) for different sets of movement rules and temporal mismatch.'>
<h3>Kürschner et al. 2021</h3>
<p>Movement can mediate temporal mismatches between resource availability and biological events in host–pathogen interactions. *ECOL EVOL*, 11:5728–5741.</p><p>
<a href='https://doi.org/10.1002/ece3.7478'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Kuerschner_2021_EcolEvol'>![](img/repo/icon-github.png){width=12%}</a>
<a href='https://zenodo.org/record/4593791'>![](img/repo/icon-zenodo.png){width=12%}</a></p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/kuerschner_2024.png' alt='Figure 1 of Kuerschner et al. 2024: Conceptual figure: Landscape homogenization (a) and synchrony/asynchrony (tlag) of host life-history and host resource availability (b) influence host–pathogen dynamics (c) and subsequently the evolution of pathogenic traits (d) that will affect strain occurrence over time where gaps in the background line are times when the strain did not occur in the landscape (e).'>
<h3>Kürschner et al. 2024</h3>
<p>Resource asynchrony and landscape homogenization as drivers of virulence evolution: The case of a directly transmitted disease in a social host. *ECOL EVOL*, 14, e11065.</p><p>
<a href='https://doi.org/10.1002/ece3.11065'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Kuerschner_2024_EcolEvol'>![](img/repo/icon-github.png){width=12%}</a>
<a href='https://zenodo.org/records/10666865'>![](img/repo/icon-zenodo.png){width=12%}</a></p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/louvrier_2021.png' alt='Graphical abstract of Louvrier et al. 2021: schematic illustration of the study workflow showing data sources (spatial data + photo trapping images), environmental filters (icons), species interactions (icons) and circular plots showing species activity patterns.'>
<h3>Louvrier et al. 2021</h3>
<p>Spatiotemporal interactions of a novel mesocarnivore community in an urban environment before and during SARS-CoV-2 lockdown. *J ANIM ECOL*, 91:367–380.</p><p>
<a href='https://doi.org/10.1111/1365-2656.13635'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Louvrier_2021_JAnimEcol'>![](img/repo/icon-github.png){width=12%}</a>
</p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/marescot_2020.png' alt='Figure 5 of Marescot et al. 2020: schematic representation of temporal changes in the composition of groups in terms of susceptible (S), infected (I) and recovered (R) juveniles and adults, in a host population with communal nursery (top) and changes in the proportion of the different types of groups in the population during the course of the epidemic (bottom).'>
<h3>Marescot et al. 2020</h3>
<p>‘Keeping the kids at home’ can limit the persistence of contagious pathogens in social animals. *J ANIM ECOL*, 90:2523–2535.</p><p>
<a href='https://doi.org/10.1111/1365-2656.13555'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Marescot_Franz_Benhaiem_2021_JAnimEcol'>![](img/repo/icon-github.png){width=12%}</a></p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/naciri_2023_biolconserv.jpg' alt='Fig. 1. The Serengeti Ecosystem. The broad location of the migratory herds between August and October (yellow) and between late December and early May (green) is provided (Hopcraft et al., 2015). The road network of the Serengeti NP is shown in black. Thick lines represent the main ‘murram’ roads; thin lines represent the tracks used by game-viewing vehicles and vehicles supplying lodges and campsites. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)'>
<h3>Naciri et al. 2023</h3>
<p>Three decades of wildlife-vehicle collisions in a protected area: Main roads and long-distance commuting trips to migratory prey increase spotted hyena roadkills in the Serengeti *BIOL CONSERV*, 279, 109950.</p><p>
<a href='https://doi.org/10.1016/j.biocon.2023.109950'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Naciri_2023_BiolConserv'>![](img/repo/icon-github.png){width=12%}</a></p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/nguyen_2021.png' alt='Figure 3 of Nguyen et al. 2021: predicted occupancy probability for the Annamite dark muntjac at the six study areas (in rows) from the fixed effect model (fixed effect column) and the random effect model (random effect column).'>
<h3>Nguyen et al. 2021</h3>
<p>Getting the big picture: Landscape-scale occupancy patterns of two Annamite endemics among multiple protected areas. *CONS SCI PRACT*, 4:e620.</p><p>
<a href='https://doi.org/10.1111/csp2.620'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Nguyen_2021_CSP'>![](img/repo/icon-github.png){width=12%}</a></p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/planillo_2021_divdist.jpg' alt='Figure 6 of Planillo et al. 2021: associations among bird species in urban areas identified by the JSDM, whose 95 CI did not overlap zero. All associations were positive. Species have been categorized based on their response group. The size of the dot represents the number of sites where the species was recorded (total 29 sites).'>
<h3>Planillo et al. 2021</h3>
<p>Arthropod abundance modulates bird community responses to urbanization. *DIV DIST*, 27:34-49.</p><p>
<a href='https://doi.org/10.1111/ddi.131698'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Planillo_2021_DivDist'>![](img/repo/icon-github.png){width=12%}</a></p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/planillo_2021_landurbplan.png' alt='Figure 1 of Planillo et al. 2021: map of the study area with the locations of the nightingale observations in the different datasets: breeding bird survey transects (blue squares); eBird records classified as all presences (red dots, all the observations submitted), filtered presences (orange dots, presences after data filtering, see methods), and absences (white dots, inferred absences after data filtering); and opportunistic observations from the Nachtigall project (black dots).'>
<h3>Planillo et al. 2021</h3>
<p>Citizen science data for urban planning: Comparing different sampling schemes for modelling urban bird distribution. *LAND URB PLAN*, 211:104098.</p><p>
<a href='https://doi.org/10.1016/j.landurbplan.2021.104098'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Planillo_2021_LandUrbPlan'>![](img/repo/icon-github.png){width=12%}</a></p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/planillo_2023_divdist.PNG' alt='Figure 1 of Planillo et al. 2023: delineate the area of data origin for the regional models that correspond with step 2 of our modelling approach to assess non-stationarity in habitat selection during the range expansion (cf. Figure 2).'>
<h3>Planillo et al. 2024</h3>
<p>Understanding habitat selection of range-expanding populations of large carnivores: 20 years of grey wolves (*Canis lupus*) recolonizing Germany. *DIVDIST*, **00**, 1–16.</p><p>
<a href='https://doi.org/10.1111/ddi.13789'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Planillo_2023_DivDist'>![](img/repo/icon-github.png){width=12%}</a></p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/planillo_2024_wildl_biol.png' alt='Figure 3 of Planillo et al. 2024.'>
<h3>Planillo et al. 2024</h3>
<p>Habitat and density effects on the demography of an expanding wolf population in Central Europe. Wildlife Biology. *WILDL BIOL*.</p><p>
<a href='tba'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Planillo_2024_WILDL-BIOL'>![](img/repo/icon-github.png){width=12%}</a></p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/radchuk_2016.png' alt='Figure 1 of Radchuk et al. 2016: schematic representation of the model structure. Scheduling and timing of the major processes is shown in a top row separately for each season: (A) summer; (B) week 44; (C) winter. Processes occurring during the summer season are shown on a white background, and those occurring in winter are shown on a gray background. The bottom row presents more details on the processes specified in the upper row: (D) shows how dispersal, reproduction, survival, and maturation (a submodel within “ageing”) of voles are implemented in the summer; (E) demonstrates how predation affects vole populations in week 44; and (F) shows details on winter survival and ageing. Ageing is the same in summer and winter seasons and is therefore shown on the white background in (E), but maturation occurs only in summer.'>
<h3>Radchuk et al. 2016</h3>
<p>From individuals to population cycles: the role of extrinsic and intrinsic factors in rodent populations. *ECOLOGY*, 97:720-732.</p><p>
<a href='https://doi.org/10.1890/15-0756.1'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://www.comses.net/codebases/4b484186-d8fb-4307-a710-fc05daa36afa/releases/1.0.0/'>![](img/repo/icon-comses.png){width=12%}</a></p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/radchuk_2019.png' alt='Figure 3 of Radchuk et al. 2019: trait changes in response to temperature. For each study in the phenotypic responses to climate with selection (PRCS) dataset, the changes in morphological traits are shown in grey and the changes in phenological traits are shown in black. Each study is identified by the publication identity, the trait and the species. Studies are sorted by trait category (black: phenological; grey: morphological), and within it by species, trait name and publication identity. Overall, phenological traits in both the PRCS dataset (black) and the PRC dataset (dark blue) were negatively affected by temperature. Morphological traits were not associated with temperature in the PRCS (grey) and showed a tendency to a negative association with temperature in the PRC dataset (cyan). In the PRC dataset there was significant variation among taxa in the effect of temperature on phenological (blue) traits, and a tendency to such variation for morphological traits (cyan).'>
<h3>Radchuk et al. 2019</h3>
<p>Adaptive responses of animals to climate change are most likely insufficient. *NAT COM*, 10:3109.</p><p>
<a href='https://doi.org/10.1038/s41467-019-10924-4'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Radchuk_2019_NatCom'>![](img/repo/icon-github.png){width=12%}</a></p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/rocha_2023_AnimConserv.jpg' alt='Figure 1 of Rocha and Sollmann 2023: Map of the study region in the southern Brazilian Amazon with camera-trap locations, land cover features and surveyed protected areas (CANP, Campos Amazônicos National Park; MNP, Mapinguari National Park GBR; Guaporé Biological Reserve and CSP; Corumbiara State Park). As there were two surveys at CANP, camera-trap locations of the second survey are in light blue.'>
<h3>Rocha & Sollmann 2023</h3>
<p>Habitat use patterns suggest that climate-driven vegetation changes will negatively impact mammal communities in the Amazon. *ANIM CONSERV*.</p><p>
<a href='https://doi.org/10.1111/acv.12853'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Rocha_Sollmann_2023_AnimConserv'>![](img/repo/icon-github.png){width=12%}</a>
<a href='https://doi.org/10.25338/B84060'>![](img/repo/icon-dryad.png){width=12%}</a> </p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/scherer_2020.png' alt='Figure 1 of Scherer et al. 2020: schematic representation of the agent-based model, possible approaches to simulate movement in epidemiological models and the analytical workflow. (a) Snapshot of the spatially explicit agent-based model with explicit host movement used in this study. (b–d) Possible modelling approaches to simulate movement in epidemiological models. (e) Simulations were run for 624 weeks (= 12 years) with the pathogen being released in the second year (grey area) to allow the pathogen to spread for at least 10 years. (f) For all 200 simulation runs per combination of movement rule (correlated random walk, habitat-dependent movement and competition-driven movement) and landscape scenario (homogeneous and three levels of spatial heterogeneity), we recorded the first and last week of the outbreak, and classified the runs as either ‘non-persistent’ (less than 10 years since pathogen release; grey) or ‘persistent’ (more than 10 years; orange). (g) Based on this information, we calculated persistence probabilities using a 10-year threshold (black dotted line) as well as three shorter time periods (2.5-, 5- and 7.5-year thresholds, grey dotted lines).'>
<h3>Scherer et al. 2020</h3>
<p>Moving infections: individual movement decisions drive disease persistence in spatially structured landscapes. *OIKOS*, 129:651–667.</p><p>
<a href='https://doi.org/10.1111/oik.07002'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Scherer_2020_OIKOS'>![](img/repo/icon-github.png){width=12%}</a>
<a href='https://zenodo.org/badge/latestdoi/177115379'>![](img/repo/icon-zenodo.png){width=12%}</a></p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/schmied_2024.png' alt='Figure 1 of Schmied et al. 2024: Map of the study area in the southeast of Ruaha National Park in East Africa. The location of 10 ground transects is shown including five perpendicular transects (P1-P5) leading away from the Great Ruaha River (GRR) and five transects alongside the GRR (transects A6 - A10).'>
<h3>Schmied et al. 2024</h3>
<p>Effect of human induced surface water scarcity on herbivore distribution during the dry season in Ruaha National Park, Tanzania. *WILDL BIOL*, e01131</p><p>
<a href='https://doi.org/10.1002/wlb3.01131'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Schmied_2024_WildlBiol'>![](img/repo/icon-github.png){width=12%}</a>
<a href='https://datadryad.org/stash/dataset/doi:10.5061/dryad.4qrfj6qgx'>![](img/repo/icon-dryad.png){width=12%}</a> </p>
</p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/scholz_2024_stoten.jpg' alt='Figure 1 of Scholz 2024: <Graphical Abstract.'>
<h3>Scholz et al. 2024</h3>
<p>Host weight, seasonality and anthropogenic factors contribute to parasite community differences between urban and rural foxes. *STOTEN* 936.</p><p>
<a href=' https://doi.org/10.1016/j.scitotenv.2024.173355'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Scholz_2024_STOTEN'>![](img/repo/icon-github.png){width=12%}</a>
<a href='https://doi.org/10.5281/zenodo.11198275'>![](img/repo/icon-zenodo.png){width=12%}</a> </p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/sollmann_2023_biorxiv.png' alt='Figure 3 of Sollmann 2024: Relationship of occupancy with elevation and forest estimated with an occupancy model353 that does (Mst) and one that does not (Ms) account for temporal variation in detection, for 10 species354 of birds surveyed across Switzerland in 2014. Shaded areas are 95% confidence intervals of355 predictions under Mst.'>
<h3>Sollmann 2024</h3>
<p>Mt or not Mt: Temporal variation in detection probability in spatial capture-recapture and occupancy models. *PEERJ* 4, e1.</p><p>
<a href='https://doi.org/10.24072/pcjournal.357'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Sollmann_2024_PCJ'>![](img/repo/icon-github.png){width=12%}</a> </p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/sollmann_caro_2024_EcolEvol.jpg' alt='Figure 1 of Sollmann, Caro 2024: Sites at which coconut crabs were sampled between 2016 and 2023 on/near the Pemba archipelago, Zanzibar. Zanzibar is located off the east coast of Tanzania, East Africa, and is part of that nation.'>
<h3>Sollmann, Caro 2024</h3>
<p>Spatio-temporal metapopulation trends: The coconut crabs of Zanzibar. *ECOL EVOL*, **14**, e70168.</p><p>
<a href='https://doi.org/10.1002/ece3.70168'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Sollmann_Caro_2024_EcolEvol'>![](img/repo/icon-github.png){width=12%}</a> </p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/tilker_2024_conservlett.jpg' alt='Figure 1 of Tilker et al. 2024: (a) Total number of snares removed by Forest Guards (blue line) and patrol effort in ha (red line); (b) response of snare detection probability to survey effort; (c) response of snare occupancy probability to covariates; thick black line shows mean effect for all years, gray shaded area show 95% confidence intervals (b and c), and light gray lines show mean effect for individual years (c only); (d) median snare occupancy probability for survey period (2011–2021); (e) median change in snare occupancy probability across the survey period; (f) percentage of area occupied (PAO) values for individual years; black dot indicates median and line indicates 50% posterior mass; based on predictions from multi-season occupancy model (d–f); (g) response of snare occupancy to prior patrol effort for two time periods, 2016 and 2021; and (h) cost of setting and removing an individual snare in the study areas, with removal cost divided by Payment for Forest Ecosystem Services and NGO aid funds.'>
<h3>Tilker et al. 2024</h3>
<p>Addressing the Southeast Asian snaring crisis: Impact of 11 years of snare removal in a biodiversity hotspot. *CONSERV LETT*, e13021.</p><p>
<a href='https://doi.org/10.1111/conl.13021'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Tilker_Niedballa_2024_CONL'>![](img/repo/icon-github.png){width=12%}</a> </p>
</li>
<li class="card-repo">
<img class="card-repo-img" src='img/repo/voigt_2022.png' alt='Figure 2 of Voigt, Scherer & Runkel 2022: Conceptual overview of the two hypothetical scenarios used for illustration of extreme situations: Low coverage scenario at large wind turbines and when encountering high-frequency echolocating bat species (top row) and high coverage scenario at small wind turbines and with low-frequency echolocating bat species (lower row).'>
<h3>Voigt et al. 2022</h3>
<p>Modelling the power of acoustic monitoring to predict bat fatalities at wind turbines. *CONSER SCI PRACT*, 4:e12841.</p><p>
<a href='https://doi.org/10.1111/csp2.12841'>![](img/repo/icon-paper.png){width=12%}</a>
<a href='https://github.com/EcoDynIZW/Voigt_2022_ConservSciPract'>![](img/repo/icon-github.png){width=12%}</a></p>
</li>
</ul>