-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfq_base_counter.py
executable file
·219 lines (174 loc) · 7.75 KB
/
fq_base_counter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#!/usr/bin/env python3
import os, sys, re
import gzip
import json
import collections
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
""" This tool counts up the reads and bases in a FASTQ file.
The idea is that for each .fastq.gz, as well as the .md5 file we also
want a .fastq.count which has:
total_reads: ...
read_length: ...
total_bases: ...
non_n_bases: ...
index_seq: ...
The script takes a .fastq.gz file to examine. If a -j JSON is supplied
then the same info will will be extracted from this file instead.
The index_seq can only be inferred from the FASTQ. I'll use the same
logic as found in qc_tools_python/lib/qc_utils/profile_fq.py
"""
def parse_args():
description = "Output base counts on a FASTQ file."
parser = ArgumentParser( description = description,
formatter_class = ArgumentDefaultsHelpFormatter)
parser.add_argument("infile", nargs='+',
help=".fastq.gz file to be read")
parser.add_argument("-j", "--json",
help="Get info from Stats.json, not from the actual file.")
return parser.parse_args()
def main(args):
if args.json:
with open(args.json) as jfh:
json_info = json.loads(jfh.read())
for fn in args.infile:
print_info(json_to_info(fn, json_info), fn=os.path.basename(fn))
else:
for fn in args.infile:
print_info(scan_fq(fn), fn=os.path.basename(fn))
def scan_fq(filename):
""" Read a file. The file must actually be a gzipped file, unless it's completely empty,
which is useful for testing.
"""
lens_found = collections.Counter()
bcs_found = collections.Counter()
ns_found = 0
bad_barcode = re.compile(br'[N0-9]')
if os.stat(filename).st_size == 0:
return dict( total_reads = 0,
min_read_len = 0,
max_read_len = 0,
n_bases = 0 )
try:
n = 0
with gzip.open(filename, mode='rb') as fh:
for n, l in enumerate(fh):
#Extract barcode
if n % 4 == 0:
candidate_bc = l.split(b":")[-1].rstrip()
if ( len(candidate_bc) < 3 or
re.search(bad_barcode, candidate_bc) ):
#That's no barcode!
pass
else:
bcs_found[candidate_bc] += 1
elif n % 4 == 1:
lens_found[len(l) - 1] += 1
ns_found += l.count(b'N')
except OSError as e:
#The GZip module doesn't tell you what file it was trying to read
e.filename = filename
e.strerror = e.args[0]
raise
return dict( total_reads = (n + 1) // 4,
min_read_len = min(lens_found.keys() or [0]),
max_read_len = max(lens_found.keys() or [0]),
total_bases = sum([ l * c for l, c in lens_found.items()]),
n_bases = ns_found,
bcs_found = bcs_found )
def json_to_info(filename, json_info):
""" Read the relevant info from json_info, using the filename to infer
which sample+read we are dealing with.
"""
fn_bits = os.path.basename(filename).split('.')[0].split('_')
read = fn_bits[-1]
lib = fn_bits[-2]
lane = fn_bits[-3]
runid = "_".join(fn_bits[0:4])
# Here UMI's get annoying again, because if read == 'UMI' then I need to look at
# read 2, which is simple enough. But if read == '2' then I actually need to look at
# read 3. But I think we can always say that read 2 is the last non-index read.
if read == 'UMI':
real_read = 1
elif read == '2':
real_read = -1
else:
real_read = int(read) - 1
# Check the run id matches
assert json_info['RunId'] == runid, \
"The JSON file is for run {} but the input file is for run {}.".format(
json_info['RunId'], runid)
# Find the info for this lib
try:
laneinfo, = [ l for l in json_info['ConversionResults'] if str(l['LaneNumber']) == lane ]
except ValueError:
raise Exception("The JSON file does not contain info about lane {}.".format(lane))
# Special case for 'unassigned'
if lib == 'unassigned':
dres = laneinfo['Undetermined']
else:
try:
dres, = [ d for d in laneinfo['DemuxResults'] if d['SampleId'].endswith(lib) ]
except ValueError:
raise Exception("The JSON file does not contain info about library {}.".format(lib))
try:
#rmet, = [ r for r in dres['ReadMetrics'] if str(r['ReadNumber']) == read ]
rmet = sorted(dres['ReadMetrics'], key=lambda r: r['ReadNumber'])[real_read]
except IndexError:
raise Exception("No ReadMetrics for read '{}' (index {}).".format(read, real_read))
# We found the metrics. Now find the read info.
try:
#ri, = [ ri for ril in json_info["ReadInfosForLanes"] if str(ril["LaneNumber"]) == lane
# for ri in ril["ReadInfos"] if str(ri["Number"]) == read and not ri["IsIndexedRead"] ]
ri = sorted([ ri for ril in json_info["ReadInfosForLanes"] if str(ril["LaneNumber"]) == lane
for ri in ril["ReadInfos"] if not ri["IsIndexedRead"] ],
key = lambda r: r["Number"])[real_read]
except IndexError:
raise Exception("The JSON file does not contain read info for read '{}' (index {}), lane {}.".format(
read, real_read,lane))
# Now we can start building the info...
res = dict()
# Not quite the same as what we get from scanning the file but it will still
# give an appropriate answer.
res['bcs_found'] = collections.Counter(
{ im['IndexSequence'].encode() : im['MismatchCounts']['0']
for im in dres.get('IndexMetrics', []) } )
res['total_reads'] = int(dres['NumberReads'])
res['min_read_len'] = res['max_read_len'] = int(ri['NumCycles'])
# Unfortunately the JSON doesn't give us the number of no-calls, just this.
res['q30_bases'] = rmet['YieldQ30']
return res
def print_info(fq_info, fn='input.fastq.gz'):
""" Show what we got.
"""
print( "filename: {}".format(fn) )
print( "total_reads: {}".format(fq_info['total_reads']) )
if fq_info['min_read_len'] == fq_info['max_read_len']:
total_bases = fq_info['min_read_len'] * fq_info['total_reads']
print( "read_length: {}".format(fq_info['min_read_len']) )
else:
# This must have been counted directly
total_bases = fq_info['total_bases']
print( "read_length: {}-{}".format(fq_info['min_read_len'], fq_info['max_read_len']) )
print( "total_bases: {}".format(total_bases) )
if 'n_bases' in fq_info:
print( "non_n_bases: {}".format(total_bases - fq_info['n_bases']) )
if 'q30_bases' in fq_info:
print( "q30_bases: {}".format(fq_info['q30_bases']) )
# Some heuristics on the barcode here. I expect a counter object, but a dict with one
# value will do.
bcs_found = fq_info.get('bcs_found', {})
barcode = 'unknown'
if len(bcs_found) == 0:
barcode = None
elif len(bcs_found) == 1:
barcode, = [ x.decode() for x in bcs_found.keys() ]
else:
common_bcs = bcs_found.most_common(2)
#If the most common occurs twice as often as the next in line
#we'll consider it the real one.
if common_bcs[0][1] >= common_bcs[1][1] * 2:
barcode = common_bcs[0][0].decode()
if barcode:
print( "index_seq: {}".format(barcode) )
if __name__ == '__main__':
main(parse_args())