-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnim_env.py
293 lines (247 loc) · 9.54 KB
/
nim_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import random
import numpy as np
class NimEnv:
def __init__(self, seed=None):
self.n_heap = 3
self.n_agents = 2
self.current_player = 0
self.winner = None
self.end = False
self.num_step = 0
if seed is not None:
random.seed(seed)
self.heaps = random.sample(range(1, 8), 3)
self.heap_avail = [True, True, True]
self.heap_keys = ["1", "2", "3"]
self.winner = None
def check_valid(self, action):
h, n = map(int, action)
if not self.heap_avail[h - 1]:
return False
if n < 1:
return False
if n > self.heaps[h - 1]:
return False
return True
def step(self, action):
"""
step method takin an action as input
Parameters
----------
action : list(int)
action[0] = 1, 2, 3 is the selected heap to take from
action[1] is the number of objects to take from the heap
Returns
-------
getObservation()
State space (printable).
reward : tuple
(0,0) when not in final state, +1 for winner and -1 for loser
otherwise.
done : bool
is the game finished.
dict
dunno.
"""
# extracting integer values h: heap id, n: nb objects to take
h, n = map(int, action)
assert self.heap_avail[h - 1], "The selected heap is already empty"
assert n >= 1, "You must take at least 1 object from the heap"
assert (
n <= self.heaps[h - 1]
), "You cannot take more objects than there are in the heap"
self.heaps[h - 1] -= n # core of the action
if self.heaps[h - 1] == 0:
self.heap_avail[h - 1] = False
reward = (0, 0)
done = False
if self.heap_avail.count(True) == 0:
done = True
self.winner = self.current_player
self.end = done
# update
self.num_step += 1
self.current_player = 0 if self.num_step % 2 == 0 else 1
next_heaps = self.heaps[:]
return self.heaps, self.end, self.winner
def observe(self):
return self.heaps, self.end, self.winner
def reward(self, player=0):
if self.end:
if self.winner is None:
return 0
else:
return 1 if player == self.winner else -1
else:
return 0
def reset(self, seed=None):
if seed is not None:
random.seed(seed)
self.heaps = random.sample(range(1, 8), 3)
self.heap_avail = [True, True, True]
self.current_player = 0
self.winner = None
self.end = False
self.num_step = 0
return self.heaps.copy()
def render(self, simple=False):
if simple:
print(self.heaps)
else:
print(u"\u2500" * 35)
for i in range(len(self.heaps)):
print(
"Heap {}: {:15s} \t ({})".format(
self.heap_keys[i], "|" * self.heaps[i], self.heaps[i]
)
)
print(u"\u2500" * 35)
class OptimalPlayer:
'''
Description:
A class to implement an epsilon-greedy optimal player in Nim.
About optimial policy:
Optimal policy relying on nim sum (binary XOR) taken from
https://en.wikipedia.org/wiki/Nim#Example_implementation
We play normal (i.e. not misere) game: the player taking the last object wins
Parameters:
epsilon: float, in [0, 1]. This is a value between 0-1 that indicates the
probability of making a random action instead of the optimal action
at any given time.
'''
def __init__(self, player=0, epsilon=0.2):
self.epsilon = epsilon
self.player = player # 0 or 1
def set_player(self, player=0, j=-1):
self.player = player
if j != -1:
self.player = 0 if j % 2 == 0 else 1
def randomMove(self, heaps):
"""
Random policy (then optimal when obvious):
- Select an available heap
- Select a random integer between 1 and the number of objects in this heap.
Parameters
----------
heaps : list of integers
list of heap sizes.
Returns
-------
move : list
move[0] is the heap to take from (starts at 1)
move[1] is the number of obj to take from heap #move[0]
"""
# the indexes of the heaps available are given by
heaps_avail = [i for i in range(len(heaps)) if heaps[i] > 0]
chosen_heap = random.choice(heaps_avail)
n_obj = random.choice(range(1, heaps[chosen_heap] + 1))
move = [chosen_heap + 1, n_obj]
return move
def compute_nim_sum(self, heaps):
"""
The nim sum is defined as the bitwise XOR operation,
this is implemented in python with the native caret (^) operator.
The bitwise XOR operation is such that:
if we have heaps = [3, 4, 5],
it can be written in bits as heaps = [011, 100, 101],
and the bitwise XOR problem gives 010 = 2 (the nim sum is 2)
Parameters
----------
heaps : list of integers
list of heap sizes.
Returns
-------
nim : int
nim sum of all heap sizes.
"""
nim = 0
for i in heaps:
nim = nim ^ i
return nim
def act(self, heaps, **kwargs):
"""
Optimal policy relying on nim sum (binary XOR) taken from
https://en.wikipedia.org/wiki/Nim#Example_implementation
We play normal (i.e. not misere) game: the player taking the last object wins
Parameters
----------
heaps : list of integers
list of heap sizes.
Returns
-------
move : list
move[0] is the heap to take from (starts at 1)
move[1] is the number of obj to take from heap #move[0]
"""
if random.random() < self.epsilon:
return self.randomMove(heaps)
else:
nim_sum = self.compute_nim_sum(heaps)
if nim_sum == 0:
# You will lose :(
count_non_0 = sum(x > 0 for x in heaps)
if count_non_0 == 0:
# Game is already finished, return a dumb move
move = [-1, -1]
else:
# Take any possible move
move = [heaps.index(max(heaps)) + 1, 1]
return move
# Calc which move to make
for index, heap in enumerate(heaps):
target_size = heap ^ nim_sum
if target_size < heap:
amount_to_remove = heap - target_size
move = [index + 1, amount_to_remove]
return move
def act_q(self, heaps, q_table_row, greedy=False):
"""
Policy relying on the Q-values learned applying q-learning algorithm.
The player taking the last object wins. If greedy is True, the policy
will select the action with the highest q-value. Otherwise it might choose
a random action with probability env.epsilon
Parameters
----------
heaps : list of integers
list of heap sizes.
q_table_row: numpy.ndarray
row of the Q-table containing the q-values of
all the possible actions in the heaps' state
greedy: bool
If greedy is True, the policy
will select the action with the highest q-value. Otherwise it might choose
a random action with probability env.epsilon. Default is False
Returns
-------
move : list
move[0] is the heap to take from (starts at 1)
move[1] is the number of obj to take from heap #move[0]
q_value: float
q_value of the chosen move
action: int
column of the chosen action in the row of the Q-table.
"""
if not greedy and random.random() < self.epsilon:
move = self.randomMove(heaps)
# converting move (list of 2 int) in the corresponding action (q_table_row's cell)
if move[0] == 1:
q_value = q_table_row[move[1]-1]
action = move[1]-1
if move[0] == 2:
q_value = q_table_row[heaps[0] + move[1]-1]
action = heaps[0] + move[1]-1
if move[0] == 3:
q_value = q_table_row[heaps[0] + heaps[1] + move[1]-1]
action = heaps[0] + heaps[1] + move[1]-1
else:
# taking the highest q-value and saving the corresponding cell's index in action, then
# converting the action to the move format (list of 2 int)
q_value = np.max(q_table_row)
action = np.argmax(q_table_row)
if action <= (heaps[0]-1):
move = [1, action + 1]
if action > (heaps[0]-1) and action <= (heaps[0] + heaps[1] - 1):
move = [2, action - heaps[0] + 1]
if action > (heaps[0] + heaps[1] - 1):
move = [3, action - heaps[1] - heaps[0] + 1]
return move, q_value, action