diff --git a/emukit/bayesian_optimization/local_penalization_calculator.py b/emukit/bayesian_optimization/local_penalization_calculator.py index 18a7670d..d21cf861 100644 --- a/emukit/bayesian_optimization/local_penalization_calculator.py +++ b/emukit/bayesian_optimization/local_penalization_calculator.py @@ -113,7 +113,7 @@ def negative_gradient_norm(x): samples = space.sample_uniform(N_SAMPLES) samples = np.vstack([samples, model.X]) gradient_norm_at_samples = negative_gradient_norm(samples) - x0 = samples[np.argmin(gradient_norm_at_samples)][None, :] + x0 = samples[np.argmin(gradient_norm_at_samples)] # Run optimizer to find point of highest gradient res = scipy.optimize.minimize(