-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbattle_royale.py
267 lines (219 loc) · 11.1 KB
/
battle_royale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
from world import World
from newnetworkagent import NetworkAgent
from math import cos, sin, pi, sqrt, atan, atan2
import numpy as np
from message import Message
import random as r
R_CCW = 0
R_CW = 1
STEP = 2
ATTACK = 3
SCALE_DISTANCE = 1.5 # should be between 0 and sqrt(WORLD_SIZE)/2
WORLD_SIZE = 30
def generateStartLocs():
distance1 = (1 + r.random())*sqrt(WORLD_SIZE)/3
distance2 = (1+ r.random())*sqrt(WORLD_SIZE)/3
distance3 = (1 + r.random())*sqrt(WORLD_SIZE)/3
orientation1 = r.random()*2*pi
orientation2 = r.random()*2*pi
orientation3 = r.random()*2*pi
angle1 = pi/6 - r.random()*pi/3
angle2 = 2*(pi/3) + pi/6 - r.random()*pi/3
angle3 = 5*pi/3 + pi/6 - r.random()*pi/3
return [
[cos(angle1)*distance1,sin(angle1)*distance1,orientation1],
[cos(angle2)*distance2,sin(angle2)*distance2,orientation2],
[cos(angle3)*distance3,sin(angle3)*distance3,orientation3]
]
class BattleRoyale(World):
def __init__(self,agents:list):
self.dictionary = dict()
self.agents = agents
# start_locs = [[sqrt(WORLD_SIZE)/2*SCALE_DISTANCE,0*SCALE_DISTANCE,pi],[(sqrt(WORLD_SIZE)/2)*cos(2*pi/3)*SCALE_DISTANCE,(sqrt(WORLD_SIZE)/2)*sin(2*pi/3)*SCALE_DISTANCE,5*pi/3],[-(sqrt(WORLD_SIZE)/2)*cos(5*pi/3)*SCALE_DISTANCE,(sqrt(WORLD_SIZE)/2)*sin(5*pi/3)*SCALE_DISTANCE,2*pi/3 - pi/2]]
start_locs = generateStartLocs()
i = 0
for agent in self.agents:
if i < 4:
self.dictionary[agent.name] = start_locs[i]
i+=1
else:
print("Too many agents...")
break
self.actions = [R_CCW, R_CW, STEP, ATTACK]
self.episode_complete = False
self.suspect_episode_complete = False
self.action_count = {0:0,1:0,2:0,3:0}
def reset(self, reset_qvalues=False, reset_state_count=False):
# print("RESETTING WORLD")
# start_locs = [[sqrt(WORLD_SIZE)/2*SCALE_DISTANCE,0*SCALE_DISTANCE,pi],[(sqrt(WORLD_SIZE)/2)*cos(2*pi/3)*SCALE_DISTANCE,(sqrt(WORLD_SIZE)/2)*sin(2*pi/3)*SCALE_DISTANCE,5*pi/3],[-(sqrt(WORLD_SIZE)/2)*cos(5*pi/3)*SCALE_DISTANCE,(sqrt(WORLD_SIZE)/2)*sin(5*pi/3)*SCALE_DISTANCE,2*pi/3 - pi/2]]
start_locs = generateStartLocs()
count = 0
for agent in self.agents:
agent.reset(reset_qvalues=reset_qvalues, reset_state_count=reset_state_count)
if count < 3:
self.dictionary[agent.name] = start_locs[count]
count+=1
else:
print("Too many agents...")
break
self.episode_complete = False
self.suspect_episode_complete = False
def step(self, action:int, agent:NetworkAgent):
reward = -1
self.action_count[action] += 1
if action == R_CW:
new_state = self.dictionary.get(agent.name)
new_state[2] = (new_state[2] + pi/12)%(2*pi)
self.dictionary[agent.name] = new_state
if action == R_CCW:
new_state = self.dictionary.get(agent.name)
new_state[2] = (new_state[2] - pi/12)%(2*pi)
self.dictionary[agent.name] = new_state
if action == STEP:
distance_stepped = 0.5 #Keep constant for now
new_state = self.dictionary.get(agent.name)
temp_state = new_state.copy()
temp_state[0] += distance_stepped*cos(new_state[2])
temp_state[1] += distance_stepped*sin(new_state[2])
if not BattleRoyale.isOutOfBounds(temp_state[0],temp_state[1]):
new_state[0] += distance_stepped*cos(new_state[2])
new_state[1] += distance_stepped*sin(new_state[2])
self.dictionary[agent.name] = new_state
if action == ATTACK:
self_pos = self.dictionary.get(agent.name)
self_x = self_pos[0]
self_y = self_pos[1]
self_theta = self_pos[2]
hit = False
for a in self.agents:
a_abs_pos = self.dictionary.get(a.name)
a_x = a_abs_pos[0]
a_y = a_abs_pos[1]
# print(sqrt((a_x - self_x)**2 + (a_y - self_y)**2)<=1,(atan2((a_y-self_y),(a_x-self_x)))<=((self_theta + pi/8)%(2*pi)),atan2((a_y-self_y),(a_x-self_x))>=((self_theta - pi/8)%2*pi))
if a != agent and sqrt((a_x - self_x)**2 + (a_y - self_y)**2)<=2 and (atan2((a_y-self_y),(a_x-self_x))-pi/5)%(2*pi)<=self_theta%(2*pi) and (atan2((a_y-self_y),(a_x-self_x))+pi/5)%(2*pi)>=self_theta%(2*pi):
# start_locs = [[sqrt(WORLD_SIZE)/2,0,pi],[(sqrt(WORLD_SIZE)/2)*cos(2*pi/3),(sqrt(WORLD_SIZE)/2)*sin(2*pi/3),5*pi/3],[-(sqrt(WORLD_SIZE)/2)*cos(5*pi/3),(sqrt(WORLD_SIZE)/2)*sin(5*pi/3),2*pi/3 - pi/2]]
# self.dictionary[a.name] >= start_locs[self.agents.index(a)]
reward = 500
# reward = 10 if not hit else 20 #previously 5 and 10
hit = True
if not hit:
reward = -25
else:
# self.episode_complete = True
self.suspect_episode_complete = True
# print(agent.name, "took action", action)
# agent.epsilon *= agent.decay_epsilon
# agent.alpha *= agent.decay_alpha
return (reward, self.dictionary)
# def process(self, message_content:tuple[str,tuple]):
def process(self, message:Message):
agent_name = message.content[0]
agent_state = message.content[1]
self.dictionary[agent_name] = agent_state
def translateAbsoluteState(self,agent:NetworkAgent):
agent_abs_position = self.dictionary.get(agent.name)
agent_x = agent_abs_position[0]
agent_y = agent_abs_position[1]
agent_theta = agent_abs_position[2]
wall_r = sqrt(WORLD_SIZE) - sqrt(agent_x**2 + agent_y**2)
wall_dtheta = atan2(agent_y,agent_x) - agent_theta #not sure if this is exactly right because of how atan2 is set up but it shouldn't matter since it's consistent
foe1_abs_position = None
foe2_abs_position = None
for a in self.agents:
if a != agent and foe1_abs_position is None:
foe1_abs_position = self.dictionary.get(a.name)
elif a != agent and foe2_abs_position is None:
foe2_abs_position = self.dictionary.get(a.name)
foe1_x = foe1_abs_position[0]
foe1_y = foe1_abs_position[1]
foe1_theta = foe1_abs_position[2]
foe1_r = sqrt((foe1_x - agent_x)**2 + (foe1_y - agent_y)**2)
foe1_dtheta = atan2((foe1_y-agent_y),(foe1_x-agent_x)) - agent_theta
foe1_reltheta = foe1_theta - agent_theta
foe2_x = foe2_abs_position[0]
foe2_y = foe2_abs_position[1]
foe2_theta = foe2_abs_position[2]
foe2_r = sqrt((foe2_x - agent_x)**2 + (foe2_y - agent_y)**2)
foe2_dtheta = atan2((foe2_y-agent_y),(foe2_x-agent_x)) - agent_theta
foe2_reltheta = foe2_theta - agent_theta
return [round(wall_r,0),round(wall_dtheta,0),round(foe1_r,0),round(foe1_dtheta,0),round(foe1_reltheta,0),round(foe2_r,0),round(foe2_dtheta,0),round(foe2_reltheta,0)]
# return [round(wall_r*2,0)/2,round(wall_dtheta*2,0)/2,round(foe1_r*2,0)/2,round(foe1_dtheta*2,0)/2,round(foe1_reltheta*2,0)/2,round(foe2_r*2,0)/2,round(foe2_dtheta*2,0)/2,round(foe2_reltheta*2,0)/2]
def visualize(self):
return super().visualize()
@staticmethod
def isOutOfBounds(x,y):
return ((x**2 + y**2) > WORLD_SIZE)
def getHeuristicBestActionFor(self, agent):
flip = r.random() >= 0.75
# if(r.random() >= 0.85):
# return r.choice(self.actions)
closest_agent = None
# other_agent = None
distance = 100 #would need to change
agent_x = self.dictionary.get(agent.name)[0]
agent_y = self.dictionary.get(agent.name)[1]
agent_theta = self.dictionary.get(agent.name)[2]
for a in self.agents:
if a.name == agent.name:
continue
curdistance = sqrt((self.dictionary.get(a.name)[0] - agent_x)**2 + (self.dictionary.get(a.name)[1] - agent_y)**2)
if curdistance < distance:
distance = curdistance
# other_agent = closest_agent
closest_agent = a
# else:
# other_agent = a
# if(r.random() >= 0.5):
# closest_agent = other_agent
closest_agent_x = self.dictionary.get(closest_agent.name)[0]
closest_agent_y = self.dictionary.get(closest_agent.name)[1]
closest_agent_theta = self.dictionary.get(closest_agent.name)[2]
alpha = max((agent_theta - closest_agent_theta), (closest_agent_theta - agent_theta))
theta = (atan2((closest_agent_y - agent_y),(closest_agent_x - agent_x)) - agent_theta)%(2*pi)
# print(alpha, theta)
# print()
will_hit_wall = False
if (agent_x + 0.5*cos(agent_theta))**2 + (agent_y + 0.5*sin(agent_theta))**2 >= WORLD_SIZE:
will_hit_wall = True
can_kill = sqrt((closest_agent_x - agent_x)**2 + (closest_agent_y - agent_y)**2)<=2 and (atan2((closest_agent_y-agent_y),(closest_agent_x-agent_x)) - pi/5)%(2*pi) <= agent_theta%(2*pi) and (atan2((closest_agent_y-agent_y),(closest_agent_x-agent_x)) + pi/5)%(2*pi) >=agent_theta%(2*pi)
# print("CAN KILL", can_kill, agent.name)
# print(self.dictionary.get(agent.name), self.dictionary.get(closest_agent.name))
if can_kill:
return ATTACK
# print(sqrt((closest_agent_x - agent_x)**2 + (closest_agent_y - agent_y)**2))
# print((atan2((closest_agent_y-agent_y),(closest_agent_x-agent_x)) - pi/5))
# print((atan2((closest_agent_y-agent_y),(closest_agent_x-agent_x)) + pi/5))
# print(will_hit_wall)
# print()
want_to_kill = alpha + pi >= 2*theta
# print("WANT TO KILL", want_to_kill, agent.name)
# if in_range:
if want_to_kill:
if (theta%(2*pi)) > pi/2 and (theta%(2*pi)) < 3*pi/2:
turn_ccw = (theta%(2*pi)) < pi
# print("HERE",turn_ccw)
if turn_ccw:
return R_CCW if not flip else R_CW
else:
return R_CW if not flip else R_CCW
else:
return STEP if not will_hit_wall and not flip else R_CW
else:
if (theta%(2*pi)) <= pi/2 or (theta%(2*pi)) >= 3*pi/2:
turn_cw = (theta%(2*pi)) < pi
# print("THERE",turn_cw)
if turn_cw:
return R_CW if not flip else R_CCW
else:
return R_CCW if not flip else R_CW
else:
return STEP if not will_hit_wall and not flip else R_CW
# sqrt(WORLD_SIZE)/2,0,pi ... sqrt(WORLD_SIZE)/2 - 0.5, 0, 0
# a = NetworkAgent(None, None)
# a.name = 'fred'
# b = NetworkAgent(None, None)
# b.name = 'bill'
# world = BattleRoyale(agents=[a,b])
# world.dictionary[(b.name)] = [sqrt(WORLD_SIZE)/2 - 0.5, 0, pi]
# print(world.getHeuristicBestActionFor(a))
# print(world.getHeuristicBestActionFor(b))