-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalpha_beta_pruning.py
43 lines (35 loc) · 1.31 KB
/
alpha_beta_pruning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
class TreeNode:
def __init__(self, score):
self.score = score
self.children = []
# Build a tree with scores at each node
root = TreeNode(2)
root.children = [TreeNode(7), TreeNode(5), TreeNode(4)]
root.children[0].children = [TreeNode(3), TreeNode(8), TreeNode(3)]
root.children[1].children = [TreeNode(1), TreeNode(2), TreeNode(6)]
root.children[2].children = [TreeNode(2), TreeNode(4), TreeNode(7)]
# Define the alpha-beta pruning function
def alpha_beta(node, depth, alpha, beta, is_maximizing):
if depth == 0 or not node.children:
return node.score
if is_maximizing:
max_eval = float("-inf")
for child in node.children:
eval = alpha_beta(child, depth - 1, alpha, beta, False)
max_eval = max(max_eval, eval)
alpha = max(alpha, eval)
if beta <= alpha:
break
return max_eval
else:
min_eval = float("inf")
for child in node.children:
eval = alpha_beta(child, depth - 1, alpha, beta, True)
min_eval = min(min_eval, eval)
beta = min(beta, eval)
if beta <= alpha:
break
return min_eval
if __name__ == "__main__":
result = alpha_beta(root, 3, float("-inf"), float("inf"), True)
print("Optimal value:", result)