-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathplotfunctions.py
528 lines (479 loc) · 21.2 KB
/
plotfunctions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
#
# Copyright (c) 2022, Alliance for Sustainable Energy
#
# This software is released under the BSD 3-clause license. See LICENSE file
# for more details.
#
"""
Plotting functions
"""
import numpy as np
from collections import OrderedDict
from matplotlib.collections import PatchCollection
from matplotlib.patches import Rectangle
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
import OpenFASTutil as OpenFAST
# -------------------------------------------------------------
def readCartBoxFile(self, filename):
"""
Read the Cartesian box file
"""
allboxes = []
fname = open(filename, 'r')
# read the number of levels
Nlevels = int(fname.readline().strip())
for i in range(Nlevels):
# Read the number of boxes at this level
Nboxes = int(fname.readline().strip())
levelboxes=[]
for b in range(Nboxes):
# Read each box
boxline = fname.readline().strip().split()
box = [float(x) for x in boxline]
if len(box)!=6:
print("Line does not contain 6 floats:")
print(" %s"%boxline)
levelboxes.append(box)
allboxes.append(levelboxes)
fname.close()
return allboxes
def plotRectangle(figax, corner1, corner2, ix, iy, **kwargs):
"""
Plot a rectangle onto figax
"""
x1 = corner1[ix]
y1 = corner1[iy]
x2 = corner2[ix]
y2 = corner2[iy]
Lx = x2-x1
Ly = y2-y1
rect=Rectangle((x1, y1), Lx, Ly, **kwargs)
figax.add_patch(rect)
return x1, y1, x2, y2
def plot3DBox(figax, origin, xaxis, yaxis, zaxis, ix, iy, **kwargs):
"""
Plots a 3D box on figax. Corner is at origin
"""
# Define the faces to plot
plotfaces = [[origin, xaxis, yaxis],
[origin, xaxis, zaxis],
[origin, yaxis, zaxis]]
# Build list for each of three faces
for face in plotfaces:
p1 = np.array(face[0])
p2 = p1+np.array(face[1])
p3 = p2+np.array(face[2])
p4 = p3-np.array(face[1])
ptlist = [p1, p2, p3, p4]
xlist = [p[ix] for p in ptlist]
ylist = [p[iy] for p in ptlist]
figax.fill(xlist, ylist, **kwargs)
return
def getCirclePts(inputorigin, inputnormal, R, Npts=10):
origin = np.array(inputorigin)
# Normalize
normal = np.array(inputnormal)/np.linalg.norm(np.array(inputnormal))
# Get the rhat vector
v = np.array([1,1,1]) # Arbitrary point
dist = np.dot(v, normal)
dr = v - dist*normal
rhat = dr/np.linalg.norm(dr)
# Get the dtheta vector
theta = 2.0*np.pi/Npts
#ds = 2.0*R*np.sin(theta/2)
ds = R*np.tan(theta)
ptlist = [origin+rhat*R]
for i in range(Npts):
rhat = ptlist[-1]-origin
rhat = rhat/np.linalg.norm(rhat)
thhat = np.cross(rhat, normal)
newpt = ptlist[-1]+ds*thhat
newrhat = newpt - origin
newrhat = newrhat/np.linalg.norm(newrhat)
newpt = origin + R*newrhat
ptlist.append(newpt)
return ptlist
def plotPtList(figax, ptlist, ix, iy, **kwargs):
xlist = [p[ix] for p in ptlist]
ylist = [p[iy] for p in ptlist]
figax.fill(xlist, ylist, **kwargs)
return
def plotCylinderSurface(figax, circle1, circle2, ix, iy, **kwargs):
Nsegs = len(circle1)
if (len(circle2) != Nsegs):
print("Circles have different edge counts! Can't plot")
return
for i in range(Nsegs):
ip1 = i+1 if i<Nsegs-1 else 0
ptlist = [circle1[i], circle1[ip1], circle2[ip1], circle2[i]]
plotPtList(figax, ptlist, ix, iy, **kwargs)
return
def plotCylinder(figax, startpt, endpt, R1, R2, ix, iy, Npts=20, **kwargs):
normal = np.array(endpt)-np.array(startpt)
startR2 = getCirclePts(startpt, normal, R2, Npts=Npts)
endR2 = getCirclePts(endpt, normal, R2, Npts=Npts)
plotPtList(figax, startR2, ix, iy, **kwargs)
plotPtList(figax, endR2, ix, iy, **kwargs)
plotCylinderSurface(figax, startR2, endR2, ix, iy, **kwargs)
if R1 is not None:
print("Cannot plot the inner radius of cylinders")
return
def rotatepoint(pt, orig, theta):
"""
Rotates a point pt about origin orig
Here theta is measured w.r.t. the x-axis
"""
dx = pt[0]-orig[0]
dy = pt[1]-orig[1]
p2=[0.0, 0.0, 0.0]
p2[0] = dx*np.cos(theta) - dy*np.sin(theta) + orig[0]
p2[1] = dx*np.sin(theta) + dy*np.cos(theta) + orig[1]
p2[2] = pt[2]
return p2
def plotTurbine(figax, basexyz, hubheight, turbD, nacelledir, ix, iy,
thetaoffset=0.0, **kwargs):
"""
Plot turbine on figax
"""
turbR = 0.5*turbD
Nsegs = 30 # Number of segments on rotor circumference
# Construct the rotor diameter ring
rotorpts = []
for theta in np.linspace(0, 360, Nsegs+1):
x = 0
y = turbR*np.cos(theta*np.pi/180.0)
z = turbR*np.sin(theta*np.pi/180.0)
rotorpts.append([x,y,z])
# Rotate the rotor ring to the right orientation
rotatetheta = (270.0+thetaoffset-nacelledir)*np.pi/180.0
rotatedring = [rotatepoint(p, [0.0,0.0,0.0], rotatetheta) for p in rotorpts]
# Translate the right to the right location
hhpt = np.array([0.0, 0.0, hubheight])
rotorpts = [np.array(p)+np.array(basexyz)+hhpt for p in rotatedring]
#print(rotorpts)
# Get the list of x and y points and plot them
xlist = [p[ix] for p in rotorpts]
ylist = [p[iy] for p in rotorpts]
figax.fill(xlist, ylist, **kwargs)
#figax.plot(xlist, ylist, **kwargs)
# Plot the turbine nacelle
nacelleW = 0.1*turbD # nacelle width (lateral)
nacelleH = 0.1*turbD # nacelle height
nacelleL = 0.2*turbD # nacelle length (streamwise)
nacellecorner = [0, -nacelleW/2, -nacelleH/2]
nacelleLaxis = [nacelleL, 0, 0]
nacelleWaxis = [0, nacelleW, 0]
nacelleHaxis = [0, 0, nacelleH]
# Rotate the points
nacelleLaxis = rotatepoint(nacelleLaxis, [0,0,0], rotatetheta)
nacelleWaxis = rotatepoint(nacelleWaxis, [0,0,0], rotatetheta)
# rotate and translate the corner
nacellecorner = rotatepoint(nacellecorner, [0,0,0], rotatetheta)
nacellecorner = np.array(nacellecorner) + np.array(basexyz) + hhpt
plot3DBox(figax, nacellecorner, nacelleLaxis, nacelleWaxis, nacelleHaxis,
ix, iy, **kwargs)
return
# -------------------------------------------------------------
def plotDomain(self, ax=None, verbose=False, plotskip=1):
# Clear and resize figure
if ax is None: ax=self.setupfigax()
# Get the variables
corner1 = self.inputvars['prob_lo'].getval()
corner2 = self.inputvars['prob_hi'].getval()
plotparams = self.popup_storteddata['plotdomain']
xychoice = plotparams['plot_chooseview']
if xychoice == 'XY':
ix,iy = 0,1
xstr, ystr='x','y'
elif xychoice == 'XZ':
ix,iy = 0,2
xstr, ystr='x','z'
elif xychoice == 'YZ':
ix,iy = 1,2
xstr, ystr='y','z'
# Wind direction
windvec = self.inputvars['ABL_velocity'].getval()
windh = self.inputvars['forcing_height'].getval()
# North direction
northdir = self.inputvars['north_vector'].getval()
# Do the domain plot here
x1, y1, x2, y2 = plotRectangle(ax, corner1, corner2, ix, iy,
color='gray', alpha=0.25)
Lx = x2-x1
Ly = y2-y1
Cx = 0.5*(x1+x2)
Cy = 0.5*(y1+y2)
ax.set_xlim([Cx-Lx*0.55, Cx+Lx*0.55])
ax.set_ylim([Cy-Ly*0.55, Cy+Ly*0.55])
if plotparams['plot_windnortharrows']:
if (windvec is not None) and (windh is not None):
# Plot the wind vector
arrowlength = 0.1*np.linalg.norm([Lx, Ly])
plotwindvec = np.array(windvec)
plotwindvec = plotwindvec/np.linalg.norm(plotwindvec)*arrowlength
windcenter = [Cx, Cy, windh]
if np.linalg.norm([plotwindvec[ix], plotwindvec[iy]])>0.0:
ax.arrow(windcenter[ix], windcenter[iy],
plotwindvec[ix], plotwindvec[iy],
width=0.05*arrowlength)
# Plot the north arrow
northlength = 0.1*np.linalg.norm([Lx, Ly])
plotnorthvec = np.array(northdir)
plotnorthvec = plotnorthvec/np.linalg.norm(plotnorthvec)*northlength
compasscenter = [Cx-0.4*Lx, Cy+0.35*Ly, windh]
if np.linalg.norm([plotnorthvec[ix], plotnorthvec[iy]])>0.0:
ax.arrow(compasscenter[ix], compasscenter[iy],
plotnorthvec[ix], plotnorthvec[iy],
color='r', head_width=0.1*northlength, linewidth=0.5)
ax.text(compasscenter[ix], 0.99*compasscenter[iy],
'N', color='r', ha='right', va='top')
# Plot the sample probes
# ---------------------------
if ((plotparams['plot_sampleprobes'] is not None)
and (len(plotparams['plot_sampleprobes'])>0)):
allsamplingdata = self.listboxpopupwindict['listboxsampling']
allprobes=allsamplingdata.getitemlist()
keystr = lambda n, d1, d2: d2.name
# Plot formatting features
splotdict = eval(plotparams['plot_sampleprobes_style'])
splotlegend = eval(plotparams['plot_sampleprobes_legend'])
allpdict = allsamplingdata.dumpdict('AMR-Wind', subset=[])
#print(allpdict)
for p in plotparams['plot_sampleprobes']:
#pdict = allsamplingdata.dumpdict('AMR-Wind', subset=[p], keyfunc=keystr)
if verbose: print("Plotting "+p)
if allpdict[p+'.type'][0]=='LineSampler':
Npts = allpdict[p+'.num_points']
start = np.array(allpdict[p+'.start'])
end = np.array(allpdict[p+'.end'])
dx = (end-start)/(Npts-1.0)
pts = []
for i in range(Npts):
pt = start + dx*i
pts.append(pt)
pts = np.array(pts)
ax.plot(pts[::plotskip,ix], pts[::plotskip,iy], label=p, **splotdict)
if allpdict[p+'.type'][0]=='PlaneSampler':
Npts = allpdict[p+'.num_points']
origin = np.array(allpdict[p+'.origin'])
axis1 = np.array(allpdict[p+'.axis1'])
axis2 = np.array(allpdict[p+'.axis2'])
dx1 = axis1/(Npts[0]-1.0)
dx2 = axis2/(Npts[1]-1.0)
if (allpdict[p+'.offsets'] is not None) and \
(allpdict[p+'.offsets'] != 'None'):
offsets =[float(x) for x in allpdict[p+'.offsets'].split()]
else:
offsets = [0.0]
try:
offsetnormal = np.array(allpdict[p+'.offset_vector'])
except:
offsetnormal = np.array(allpdict[p+'.normal'])
offsetvec = []
if len(offsets)==0:
offsetvec.append(np.zeros(3))
else:
for dx in offsets:
offsetvec.append(offsetnormal*dx)
pts = []
# Construct the list of all plane points
for doffset in offsetvec:
for i in range(Npts[0]):
for j in range(Npts[1]):
pt = origin + i*dx1 + j*dx2 + doffset
pts.append(pt)
pts = np.array(pts)
ax.plot(pts[::plotskip,ix], pts[::plotskip,iy], label=p, **splotdict)
if allpdict[p+'.type'][0]=='LidarSampler':
# Get the inputs
Npts = allpdict[p+'.num_points']
length = allpdict[p+'.length']
origin = np.array(allpdict[p+'.origin'])
time_table_str = allpdict[p+'.time_table']
azi_table_str = allpdict[p+'.azimuth_table']
ele_table_str = allpdict[p+'.elevation_table']
# Convert strings to arrays
str2array = lambda s: np.array([float(x) for x in s.split()])
deg2rad = lambda d: d/180.0*np.pi
time_table = str2array(time_table_str)
azi_table = str2array(azi_table_str)
ele_table = str2array(ele_table_str)
# Get the time discretization
t1 = time_table[0]
t2 = time_table[-1]
Ntime = plotparams['plot_lidar_Ntime']
timevec = np.linspace(t1, t2, Ntime)
dx = length/float(Npts-1)
pts = []
# Construct a list of all lidar points
for t in timevec:
current_azi = deg2rad(np.interp(t, time_table, azi_table))
current_ele = deg2rad(90.0 - np.interp(t, time_table, ele_table))
for i in range(Npts):
lidar_pt_0 = (origin[0] + i*dx*
np.cos(current_azi)*np.sin(current_ele))
lidar_pt_1 = (origin[1] + i*dx*
np.sin(current_azi)*np.sin(current_ele))
lidar_pt_2 = (origin[2] + i*dx*np.cos(current_ele))
lidar_pt = np.array([lidar_pt_0,
lidar_pt_1,
lidar_pt_2])
pts.append(lidar_pt)
pts = np.array(pts)
ax.plot(pts[::plotskip,ix], pts[::plotskip,iy], label=p, **splotdict)
if splotlegend:
legendprobes=ax.legend(**splotlegend)
legendfontsize = 10 if 'fontsize' not in splotlegend else splotlegend['fontsize']
plt.setp(legendprobes.get_title(),fontsize=legendfontsize)
ax.add_artist(legendprobes)
# Plot the refinement boxes
# ---------------------------
if ((plotparams['plot_refineboxes'] is not None) and
(len(plotparams['plot_refineboxes'])>0)):
#print(plotparams['plot_refineboxes'])
allrefinements = self.listboxpopupwindict['listboxtagging']
alltags = allrefinements.getitemlist()
keystr = lambda n, d1, d2: d2.name
# Need to validate maxlevel! Fix this!
maxlevel = self.inputvars['max_level'].getval()
# Get the level colors
try:
levelcolors=plt.rcParams['axes.color_cycle']
except:
levelcolors=plt.rcParams['axes.prop_cycle'].by_key()['color']
tagginglegend = eval(plotparams['plot_refineboxes_legend'])
for p in plotparams['plot_refineboxes']:
pdict = allrefinements.dumpdict('AMR-Wind',
subset=[p], keyfunc=keystr)
# Plot the Cartesian Box Refinements
if pdict['tagging_type'][0]=='CartBoxRefinement':
filename = pdict['tagging_static_refinement_def']
# Load the boxes
allboxes = self.readCartBoxFile(filename)
if len(allboxes)>maxlevel: maxlevel = len(allboxes)
for ilevel, boxlevel in enumerate(allboxes):
for box in boxlevel:
corner1 = box[0:3]
corner2 = box[3:6]
color = levelcolors[ilevel]
plotRectangle(ax, corner1, corner2, ix, iy,
facecolor=color, ec='k', lw=0.5,
alpha=0.90)
# Plot the Geometry Refinements
if pdict['tagging_type'][0]=='GeometryRefinement':
if pdict['tagging_geom_type'][0]=='box':
origin = pdict['tagging_geom_origin']
xaxis = pdict['tagging_geom_xaxis']
yaxis = pdict['tagging_geom_yaxis']
zaxis = pdict['tagging_geom_zaxis']
ilevel = pdict['tagging_level']
if ilevel is not None:
color = levelcolors[ilevel]
else:
color = levelcolors[0]
plot3DBox(ax, origin, xaxis, yaxis, zaxis, ix, iy,
lw=0.4, facecolor=color, alpha=0.90)
if pdict['tagging_geom_type'][0]=='cylinder':
cylstart = pdict['tagging_geom_start']
cylend = pdict['tagging_geom_end']
outerR = pdict['tagging_geom_outer_radius']
innerR = pdict['tagging_geom_inner_radius']
ilevel = pdict['tagging_level']
if ilevel is not None:
color = levelcolors[ilevel]
else:
color = levelcolors[0]
#print("cylinder geometry refinement plotting not supported")
print("plotting cylinder")
plotCylinder(ax, cylstart, cylend, innerR, outerR, ix, iy,
facecolor=color)
# Add a legend with the level labels
legend_el = []
legend_label = []
legend_el.append(Line2D([0],[0],
linewidth=0, marker='s', color='gray',
alpha=0.25, label='Level 0'))
legend_label.append('Level 0')
for i in range(maxlevel):
legend_el.append(Line2D([0],[0],
linewidth=0, marker='s',
color=levelcolors[i+0],
alpha=0.75,
label='Level %i'%(i+0)))
legend_label.append('Level %i'%(i+1))
legendrefine = ax.legend(legend_el, legend_label, **tagginglegend)
ax.add_artist(legendrefine)
# Plot the turbines
# ---------------------------
if ((plotparams['plot_turbines'] is not None) and
(len(plotparams['plot_turbines'])>0)):
if verbose: print("Plotting turbines")
allturbines = self.listboxpopupwindict['listboxactuator']
alltags = allturbines.getitemlist()
keystr = lambda n, d1, d2: d2.name
# Get the defaults
default_type = self.inputvars['Actuator_default_type'].getval()
default_type = None if len(default_type)==0 else default_type
default_type = default_type[0] if isinstance(default_type, list) else default_type
if 'Actuator_%s_rotor_diameter'%default_type in self.inputvars:
default_turbD = self.inputvars['Actuator_%s_rotor_diameter'%default_type].getval()
else:
default_turbD = 100.0
if 'Actuator_%s_hub_height'%default_type in self.inputvars:
default_hh = self.inputvars['Actuator_%s_hub_height'%default_type].getval()
else:
default_hh = None
# Get the wind direction
self.ABL_calculateWDirWS()
winddir = self.inputvars['ABL_winddir'].getval()
# Get any north offset
thetaoffset = self.get_N_angle_to_Y()
for turb in plotparams['plot_turbines']:
tdict = allturbines.dumpdict('AMR-Wind',
subset=[turb], keyfunc=keystr)
turbtype = default_type if 'Actuator_type' not in tdict else tdict['Actuator_type']
turbtype = turbtype[0] if isinstance(turbtype, list) else turbtype
turbhh = default_hh if tdict['Actuator_hub_height'] is None else tdict['Actuator_hub_height']
turbhh = 0.0 if turbhh is None else turbhh
turbD = default_turbD if tdict['Actuator_rotor_diameter'] is None else tdict['Actuator_rotor_diameter']
basepos = tdict['Actuator_base_position']
yaw = winddir if tdict['Actuator_yaw'] is None else tdict['Actuator_yaw'] #270.0
if turbtype in ['TurbineFastLine', 'TurbineFastDisk']:
fstfile = tdict['Actuator_openfast_input_file']
EDfile = OpenFAST.getFileFromFST(fstfile,'EDFile')
EDdict = OpenFAST.FASTfile2dict(EDfile)
EDyaw = float(EDdict['NacYaw'])
yaw = 270.0+thetaoffset-EDyaw
plotTurbine(ax, basepos, turbhh, turbD, yaw, ix, iy,
lw=1, color='k', alpha=0.75)
# --------------------------------
# Set some plot formatting parameters
ax.set_aspect('equal')
ax.set_xlabel('%s [m]'%xstr)
ax.set_ylabel('%s [m]'%ystr)
ax.set_title(r'Domain')
self.figcanvas.draw()
#self.figcanvas.show()
return
# -------------------------------------------------------------
def plotGenericProfile(self, xvar, yvar, useInputVar=True, ax=None,
title='', xlabel='', ylabel=''):
"""
Plots a profile given by the xvar and yvar string variables
"""
# Clear and resize figure
if ax is None: ax=self.setupfigax()
# Get the strings
xstr = self.getAMRWindInput(xvar) if useInputVar else xvar
ystr = self.getAMRWindInput(yvar) if useInputVar else yvar
# Convert the strings to arrays
xarr = np.array([float(x) for x in xstr.split()])
yarr = np.array([float(y) for y in ystr.split()])
# Plot it
ax.plot(xarr, yarr)
if xlabel != '': ax.set_xlabel(xlabel)
if ylabel != '': ax.set_ylabel(ylabel)
if title != '': ax.set_title(title)
self.figcanvas.draw()
return