-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path003_largest_prime_factor.hs
65 lines (46 loc) · 2.13 KB
/
003_largest_prime_factor.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import Data.Bits
-- The prime factors of 13195 are 5, 7, 13 and 29.
--
-- What is the largest prime factor of the number 600851475143 ?
-- lists all prime factors of n
primefactors :: (Integral a) => a -> [a]
primefactors n = primefactorsAux n 2 []
primefactorsAux :: (Integral a) => a -> a -> [a] -> [a]
primefactorsAux n divisor factors
| n == 1 = factors
| (mod n divisor) == 0 = primefactorsAux (div n divisor) (divisor) (divisor:factors)
| otherwise = primefactorsAux n (divisor+1) factors
-- main :: IO()
-- main = putStrLn $ show $ primefactors 600851475143
-- main = putStrLn $ show $ primefactors 79904872159354901403735136257271915903199354993162141876782616770989250284251
-- unused:
-- square root for integrals
sqrt' :: (Integral a) => a -> a
sqrt' n = floor (sqrt ( fromIntegral n))
-- deletes all multiples of n from a given list
deleteMultiples :: (Integral a) => a -> [a] -> [a]
deleteMultiples n list = [x | x <- list, (mod x n) /= 0]
-- returns all prime numbers between 2 and n
sieveOfEratosthenes :: (Integral a) => a -> [a]
sieveOfEratosthenes n = sieveOfEratosthenesAux (sqrt' n) [2..n] []
sieveOfEratosthenesAux :: (Integral a) => a -> [a] -> [a] -> [a]
sieveOfEratosthenesAux endN list primes
| head list > endN = primes ++ list
| otherwise = sieveOfEratosthenesAux endN (deleteMultiples (head list) list) (head list : primes)
listTilSqrt :: (Integral a) => a -> [a]
listTilSqrt n = [2..(floor (sqrt (fromIntegral n)))]
isPrimeFermat :: (Integral a) => a -> Bool
isPrimeFermat n
| mod n 2 == 0 = False
| otherwise = isPrimeFermat' n 2
isPrimeFermat' :: (Integral a) => a -> a -> Bool
isPrimeFermat' n base
| mod n base == 0 = isPrimeFermat' n (base+1)
| otherwise = (mod (base^(n-1)) n) == 1
lastPrimeFactor :: (Integral a) => a -> a
lastPrimeFactor maxN = lastPrimeFactor' maxN (floor (sqrt ( fromIntegral maxN)))
lastPrimeFactor' :: (Integral a) => a -> a -> a
lastPrimeFactor' maxN n
| n == 1 = maxN
| (mod maxN n) == 0 = lastPrimeFactor' n (floor (sqrt ( fromIntegral n)))
| otherwise = lastPrimeFactor' maxN (n-1)