-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path038_pandigital_multiples.cpp
66 lines (57 loc) · 1.72 KB
/
038_pandigital_multiples.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
/*
* Take the number 192 and multiply it by each of 1, 2, and 3:
*
* 192 × 1 = 192
* 192 × 2 = 384
* 192 × 3 = 576
* By concatenating each product we get the 1 to 9 pandigital, 192384576. We will call 192384576 the concatenated
* product of 192 and (1,2,3)
*
* The same can be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital, 918273645,
* which is the concatenated product of 9 and (1,2,3,4,5).
*
* What is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated product of an integer
* with (1,2, ... , n) where n > 1?
*/
#include <set>
#include <iostream>
#include "MyLib_cpp.h"
using namespace std;
int concat(int a, int b) {
return a * (unsigned int) pow(10, numLength(b)) + b;
}
bool isPandigital(int n) {
if (n > 987654321 || n < 123456789)
return false;
set<int> digits;
for (int i = 0; i < 9; ++i) {
auto ret = digits.insert(n % 10);
if (!ret.second)
return false;
n /= 10;
}
return digits.size() == 9 && digits.find(0) == digits.end();
}
int main() {
int largestPan = 0;
int largestN = 0;
int largestJ = 0;
for (int i = 1; i < 10000; ++i) {
int n = i;
int pan = n;
int j;
for (j = 2; j < 10; ++j) {
pan = concat(pan, n * j);
if (pan >= 100000000)
break;
}
if (isPandigital(pan) && pan > largestPan) {
largestPan = pan;
largestN = n;
largestJ = j;
}
}
cout << "Largest Pandigital = " << largestPan << endl;
cout << "base = " << largestN << endl;
cout << "concatenations = " << largestJ << endl;
}