You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Thread 0x00007f7923687700 (most recent call first):
File "/home/user/miniconda/envs/py36/lib/python3.6/selectors.py", line 376 in select
File "/home/user/miniconda/envs/py36/lib/python3.6/multiprocessing/connection.py", line 911 in wait
File "/home/user/miniconda/envs/py36/lib/python3.6/multiprocessing/connection.py", line 414 in _poll
File "/home/user/miniconda/envs/py36/lib/python3.6/multiprocessing/connection.py", line 257 in poll
File "/home/user/miniconda/envs/py36/lib/python3.6/multiprocessing/queues.py", line 104 in get
File "/home/user/miniconda/envs/py36/lib/python3.6/site-packages/tensorboardX/event_file_writer.py", line 202 in run
File "/home/user/miniconda/envs/py36/lib/python3.6/threading.py", line 916 in _bootstrap_inner
File "/home/user/miniconda/envs/py36/lib/python3.6/threading.py", line 884 in _bootstrap
Thread 0x00007f797e1ef700 (most recent call first):
File "/home/user/miniconda/envs/py36/lib/python3.6/site-packages/fastai/callbacks/tensorboard.py", line 235 in _queue_processor
File "/home/user/miniconda/envs/py36/lib/python3.6/threading.py", line 864 in run
File "/home/user/miniconda/envs/py36/lib/python3.6/threading.py", line 916 in _bootstrap_inner
File "/home/user/miniconda/envs/py36/lib/python3.6/threading.py", line 884 in _bootstrap
Current thread 0x00007f7a07cd3700 (most recent call first):
File "/ABINet/dataset.py", line 61 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 120 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
...
Aborted (core dumped)
Do you know what should I do with my dataset?
Thanks
The text was updated successfully, but these errors were encountered:
This massage is logged to the terminal:
[2021-10-14 04:53:57,225 main.py:215 INFO train-abinet] ModelConfig(
(0): dataset_case_sensitive = False
(1): dataset_charset_path = data/charset_36.txt
(2): dataset_data_aug = True
(3): dataset_eval_case_sensitive = False
(4): dataset_image_height = 32
(5): dataset_image_width = 128
(6): dataset_max_length = 25
(7): dataset_multiscales = False
(8): dataset_num_workers = 14
(9): dataset_one_hot_y = True
(10): dataset_pin_memory = True
(11): dataset_smooth_factor = 0.1
(12): dataset_smooth_label = False
(13): dataset_test_batch_size = 384
(14): dataset_test_roots = ['data/training/MJ/MJ_train/', 'data/training/MJ/MJ_test/', 'data/training/MJ/MJ_valid/', 'data/training/ST']
(15): dataset_train_batch_size = 384
(16): dataset_train_roots = ['data/training/MJ/MJ_train/', 'data/training/MJ/MJ_test/', 'data/training/MJ/MJ_valid/', 'data/training/ST']
(17): dataset_use_sm = False
(18): global_name = train-abinet
(19): global_phase = train
(20): global_seed = None
(21): global_stage = train-super
(22): global_workdir = workdir/train-abinet
(23): model_alignment_loss_weight = 1.0
(24): model_checkpoint = None
(25): model_ensemble =
(26): model_iter_size = 3
(27): model_language_checkpoint = workdir/pretrain-language-model/pretrain-language-model.pth
(28): model_language_detach = True
(29): model_language_loss_weight = 1.0
(30): model_language_num_layers = 4
(31): model_language_use_self_attn = False
(32): model_name = modules.model_abinet_iter.ABINetIterModel
(33): model_strict = True
(34): model_use_vision = False
(35): model_vision_attention = position
(36): model_vision_backbone = transformer
(37): model_vision_backbone_ln = 3
(38): model_vision_checkpoint = workdir/pretrain-vision-model/best-pretrain-vision-model.pth
(39): model_vision_loss_weight = 1.0
(40): optimizer_args_betas = (0.9, 0.999)
(41): optimizer_bn_wd = False
(42): optimizer_clip_grad = 20
(43): optimizer_lr = 0.0001
(44): optimizer_scheduler_gamma = 0.1
(45): optimizer_scheduler_periods = [6, 4]
(46): optimizer_true_wd = False
(47): optimizer_type = Adam
(48): optimizer_wd = 0.0
(49): training_epochs = 10
(50): training_eval_iters = 3000
(51): training_save_iters = 3000
(52): training_show_iters = 50
(53): training_start_iters = 0
(54): training_stats_iters = 100000
)
[2021-10-14 04:53:57,226 main.py:222 INFO train-abinet] Construct dataset.
[2021-10-14 04:53:57,228 main.py:92 INFO train-abinet] 67199 training items found.
[2021-10-14 04:53:57,228 main.py:94 INFO train-abinet] 67199 valid items found.
[2021-10-14 04:53:57,228 main.py:226 INFO train-abinet] Construct model.
[2021-10-14 04:53:57,488 model_vision.py:37 INFO train-abinet] Read vision model from workdir/pretrain-vision-model/best-pretrain-vision-model.pth.
[2021-10-14 04:53:59,805 model_language.py:38 INFO train-abinet] Read language model from workdir/pretrain-language-model/pretrain-language-model.pth.
[2021-10-14 04:53:59,843 main.py:104 INFO train-abinet] ABINetIterModel(
(vision): BaseVision(
(backbone): ResTranformer(
(resnet): ResNet(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(layer1): Sequential(
(0): BasicBlock(
(conv1): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(32, 32, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(2): BasicBlock(
(conv1): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(layer2): Sequential(
(0): BasicBlock(
(conv1): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(2): BasicBlock(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(3): BasicBlock(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(layer3): Sequential(
(0): BasicBlock(
(conv1): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(2): BasicBlock(
(conv1): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(3): BasicBlock(
(conv1): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(4): BasicBlock(
(conv1): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(5): BasicBlock(
(conv1): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(layer4): Sequential(
(0): BasicBlock(
(conv1): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(2): BasicBlock(
(conv1): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(3): BasicBlock(
(conv1): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(4): BasicBlock(
(conv1): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(5): BasicBlock(
(conv1): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(layer5): Sequential(
(0): BasicBlock(
(conv1): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(2): BasicBlock(
(conv1): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(pos_encoder): PositionalEncoding(
(dropout): Dropout(p=0.1)
)
(transformer): TransformerEncoder(
(layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): Linear(in_features=512, out_features=512, bias=True)
)
(linear1): Linear(in_features=512, out_features=2048, bias=True)
(dropout): Dropout(p=0.1)
(linear2): Linear(in_features=2048, out_features=512, bias=True)
(norm1): LayerNorm(torch.Size([512]), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm(torch.Size([512]), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1)
(dropout2): Dropout(p=0.1)
)
(1): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): Linear(in_features=512, out_features=512, bias=True)
)
(linear1): Linear(in_features=512, out_features=2048, bias=True)
(dropout): Dropout(p=0.1)
(linear2): Linear(in_features=2048, out_features=512, bias=True)
(norm1): LayerNorm(torch.Size([512]), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm(torch.Size([512]), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1)
(dropout2): Dropout(p=0.1)
)
(2): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): Linear(in_features=512, out_features=512, bias=True)
)
(linear1): Linear(in_features=512, out_features=2048, bias=True)
(dropout): Dropout(p=0.1)
(linear2): Linear(in_features=2048, out_features=512, bias=True)
(norm1): LayerNorm(torch.Size([512]), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm(torch.Size([512]), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1)
(dropout2): Dropout(p=0.1)
)
)
)
)
(attention): PositionAttention(
(k_encoder): Sequential(
(0): Sequential(
(0): Conv2d(512, 64, kernel_size=(3, 3), stride=(1, 2), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
)
(1): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
)
(2): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
)
(3): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)
)
)
(k_decoder): Sequential(
(0): Sequential(
(0): Upsample(scale_factor=2.0, mode=nearest)
(1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(3): ReLU(inplace)
)
(1): Sequential(
(0): Upsample(scale_factor=2.0, mode=nearest)
(1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(3): ReLU(inplace)
)
(2): Sequential(
(0): Upsample(scale_factor=2.0, mode=nearest)
(1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(3): ReLU(inplace)
)
(3): Sequential(
(0): Upsample(size=(8, 32), mode=nearest)
(1): Conv2d(64, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(3): ReLU(inplace)
)
)
(pos_encoder): PositionalEncoding(
(dropout): Dropout(p=0)
)
(project): Linear(in_features=512, out_features=512, bias=True)
)
(cls): Linear(in_features=512, out_features=37, bias=True)
)
(language): BCNLanguage(
(proj): Linear(in_features=37, out_features=512, bias=False)
(token_encoder): PositionalEncoding(
(dropout): Dropout(p=0.1)
)
(pos_encoder): PositionalEncoding(
(dropout): Dropout(p=0)
)
(model): TransformerDecoder(
(layers): ModuleList(
(0): TransformerDecoderLayer(
(multihead_attn): MultiheadAttention(
(out_proj): Linear(in_features=512, out_features=512, bias=True)
)
(linear1): Linear(in_features=512, out_features=2048, bias=True)
(dropout): Dropout(p=0.1)
(linear2): Linear(in_features=2048, out_features=512, bias=True)
(norm2): LayerNorm(torch.Size([512]), eps=1e-05, elementwise_affine=True)
(norm3): LayerNorm(torch.Size([512]), eps=1e-05, elementwise_affine=True)
(dropout2): Dropout(p=0.1)
(dropout3): Dropout(p=0.1)
)
(1): TransformerDecoderLayer(
(multihead_attn): MultiheadAttention(
(out_proj): Linear(in_features=512, out_features=512, bias=True)
)
(linear1): Linear(in_features=512, out_features=2048, bias=True)
(dropout): Dropout(p=0.1)
(linear2): Linear(in_features=2048, out_features=512, bias=True)
(norm2): LayerNorm(torch.Size([512]), eps=1e-05, elementwise_affine=True)
(norm3): LayerNorm(torch.Size([512]), eps=1e-05, elementwise_affine=True)
(dropout2): Dropout(p=0.1)
(dropout3): Dropout(p=0.1)
)
(2): TransformerDecoderLayer(
(multihead_attn): MultiheadAttention(
(out_proj): Linear(in_features=512, out_features=512, bias=True)
)
(linear1): Linear(in_features=512, out_features=2048, bias=True)
(dropout): Dropout(p=0.1)
(linear2): Linear(in_features=2048, out_features=512, bias=True)
(norm2): LayerNorm(torch.Size([512]), eps=1e-05, elementwise_affine=True)
(norm3): LayerNorm(torch.Size([512]), eps=1e-05, elementwise_affine=True)
(dropout2): Dropout(p=0.1)
(dropout3): Dropout(p=0.1)
)
(3): TransformerDecoderLayer(
(multihead_attn): MultiheadAttention(
(out_proj): Linear(in_features=512, out_features=512, bias=True)
)
(linear1): Linear(in_features=512, out_features=2048, bias=True)
(dropout): Dropout(p=0.1)
(linear2): Linear(in_features=2048, out_features=512, bias=True)
(norm2): LayerNorm(torch.Size([512]), eps=1e-05, elementwise_affine=True)
(norm3): LayerNorm(torch.Size([512]), eps=1e-05, elementwise_affine=True)
(dropout2): Dropout(p=0.1)
(dropout3): Dropout(p=0.1)
)
)
)
(cls): Linear(in_features=512, out_features=37, bias=True)
)
(alignment): BaseAlignment(
(w_att): Linear(in_features=1024, out_features=512, bias=True)
(cls): Linear(in_features=512, out_features=37, bias=True)
)
)
[2021-10-14 04:53:59,848 main.py:229 INFO train-abinet] Construct learner.
[2021-10-14 04:53:59,962 main.py:233 INFO train-abinet] Start training.
Traceback (most recent call last):
File "/ABINet/dataset.py", line 103, in get
return self._next_image(idx)
File "/ABINet/dataset.py", line 61, in _next_image
next_index = random.randint(0, len(self) - 1)
RecursionError: maximum recursion depth exceeded
[2021-10-14 04:53:59,994 dataset.py:119 INFO train-abinet] Corrupted image is found: MJ_train, 34607, , 0
Fatal Python error: Cannot recover from stack overflow.
Thread 0x00007f7923687700 (most recent call first):
File "/home/user/miniconda/envs/py36/lib/python3.6/selectors.py", line 376 in select
File "/home/user/miniconda/envs/py36/lib/python3.6/multiprocessing/connection.py", line 911 in wait
File "/home/user/miniconda/envs/py36/lib/python3.6/multiprocessing/connection.py", line 414 in _poll
File "/home/user/miniconda/envs/py36/lib/python3.6/multiprocessing/connection.py", line 257 in poll
File "/home/user/miniconda/envs/py36/lib/python3.6/multiprocessing/queues.py", line 104 in get
File "/home/user/miniconda/envs/py36/lib/python3.6/site-packages/tensorboardX/event_file_writer.py", line 202 in run
File "/home/user/miniconda/envs/py36/lib/python3.6/threading.py", line 916 in _bootstrap_inner
File "/home/user/miniconda/envs/py36/lib/python3.6/threading.py", line 884 in _bootstrap
Thread 0x00007f797e1ef700 (most recent call first):
File "/home/user/miniconda/envs/py36/lib/python3.6/site-packages/fastai/callbacks/tensorboard.py", line 235 in _queue_processor
File "/home/user/miniconda/envs/py36/lib/python3.6/threading.py", line 864 in run
File "/home/user/miniconda/envs/py36/lib/python3.6/threading.py", line 916 in _bootstrap_inner
File "/home/user/miniconda/envs/py36/lib/python3.6/threading.py", line 884 in _bootstrap
Current thread 0x00007f7a07cd3700 (most recent call first):
File "/ABINet/dataset.py", line 61 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 120 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
File "/ABINet/dataset.py", line 62 in _next_image
File "/ABINet/dataset.py", line 103 in get
...
Aborted (core dumped)
Do you know what should I do with my dataset?
Thanks
The text was updated successfully, but these errors were encountered: