-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmodel.py
148 lines (114 loc) · 4.97 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
class Highway(nn.Module):
"""Highway network"""
def __init__(self, input_size):
super(Highway, self).__init__()
self.fc1 = nn.Linear(input_size, input_size, bias=True)
self.fc2 = nn.Linear(input_size, input_size, bias=True)
def forward(self, x):
t = F.sigmoid(self.fc1(x))
return torch.mul(t, F.relu(self.fc2(x))) + torch.mul(1-t, x)
class charLM(nn.Module):
"""CNN + highway network + LSTM
# Input:
4D tensor with shape [batch_size, in_channel, height, width]
# Output:
2D Tensor with shape [batch_size, vocab_size]
# Arguments:
char_emb_dim: the size of each character's embedding
word_emb_dim: the size of each word's embedding
vocab_size: num of unique words
num_char: num of characters
use_gpu: True or False
"""
def __init__(self, char_emb_dim, word_emb_dim,
vocab_size, num_char, use_gpu):
super(charLM, self).__init__()
self.char_emb_dim = char_emb_dim
self.word_emb_dim = word_emb_dim
self.vocab_size = vocab_size
# char embedding layer
self.char_embed = nn.Embedding(num_char, char_emb_dim)
# convolutions of filters with different sizes
self.convolutions = []
# list of tuples: (the number of filter, width)
self.filter_num_width = [(25, 1), (50, 2), (75, 3), (100, 4), (125, 5), (150, 6)]
for out_channel, filter_width in self.filter_num_width:
self.convolutions.append(
nn.Conv2d(
1, # in_channel
out_channel, # out_channel
kernel_size=(char_emb_dim, filter_width), # (height, width)
bias=True
)
)
self.highway_input_dim = sum([x for x, y in self.filter_num_width])
self.batch_norm = nn.BatchNorm1d(self.highway_input_dim, affine=False)
# highway net
self.highway1 = Highway(self.highway_input_dim)
self.highway2 = Highway(self.highway_input_dim)
# LSTM
self.lstm_num_layers = 2
self.lstm = nn.LSTM(input_size=self.highway_input_dim,
hidden_size=self.word_emb_dim,
num_layers=self.lstm_num_layers,
bias=True,
dropout=0.5,
batch_first=True)
# output layer
self.dropout = nn.Dropout(p=0.5)
self.linear = nn.Linear(self.word_emb_dim, self.vocab_size)
if use_gpu is True:
for x in range(len(self.convolutions)):
self.convolutions[x] = self.convolutions[x].cuda()
self.highway1 = self.highway1.cuda()
self.highway2 = self.highway2.cuda()
self.lstm = self.lstm.cuda()
self.dropout = self.dropout.cuda()
self.char_embed = self.char_embed.cuda()
self.linear = self.linear.cuda()
self.batch_norm = self.batch_norm.cuda()
def forward(self, x, hidden):
# Input: Variable of Tensor with shape [num_seq, seq_len, max_word_len+2]
# Return: Variable of Tensor with shape [num_words, len(word_dict)]
lstm_batch_size = x.size()[0]
lstm_seq_len = x.size()[1]
x = x.contiguous().view(-1, x.size()[2])
# [num_seq*seq_len, max_word_len+2]
x = self.char_embed(x)
# [num_seq*seq_len, max_word_len+2, char_emb_dim]
x = torch.transpose(x.view(x.size()[0], 1, x.size()[1], -1), 2, 3)
# [num_seq*seq_len, 1, max_word_len+2, char_emb_dim]
x = self.conv_layers(x)
# [num_seq*seq_len, total_num_filters]
x = self.batch_norm(x)
# [num_seq*seq_len, total_num_filters]
x = self.highway1(x)
x = self.highway2(x)
# [num_seq*seq_len, total_num_filters]
x = x.contiguous().view(lstm_batch_size,lstm_seq_len, -1)
# [num_seq, seq_len, total_num_filters]
x, hidden = self.lstm(x, hidden)
# [seq_len, num_seq, hidden_size]
x = self.dropout(x)
# [seq_len, num_seq, hidden_size]
x = x.contiguous().view(lstm_batch_size*lstm_seq_len, -1)
# [num_seq*seq_len, hidden_size]
x = self.linear(x)
# [num_seq*seq_len, vocab_size]
return x, hidden
def conv_layers(self, x):
chosen_list = list()
for conv in self.convolutions:
feature_map = F.tanh(conv(x))
# (batch_size, out_channel, 1, max_word_len-width+1)
chosen = torch.max(feature_map, 3)[0]
# (batch_size, out_channel, 1)
chosen = chosen.squeeze()
# (batch_size, out_channel)
chosen_list.append(chosen)
# (batch_size, total_num_filers)
return torch.cat(chosen_list, 1)