-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
112 lines (84 loc) · 3.81 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#coding=utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data' , one_hot=True)
def compute_accuracy(v_xs , v_ys):
global prediction
y_pre = sess.run(prediction , feed_dict = {xs:v_xs , ys:v_ys , keep_prob:1})
correct_prediction = tf.equal(tf.argmax(y_pre , 1) , tf.argmax(v_ys , 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction , tf.float32))
result = sess.run(accuracy , feed_dict = {xs:v_xs , ys:v_ys , keep_prob: 1})
return result
def weight_variable(shape):
initial = tf.truncated_normal(shape , stddev = 0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1 , shape = shape)
return tf.Variable(initial)
def conv2d(x , W):
#stride[1 , x_move , y_move , 1]
#padding 零填充
return tf.nn.conv2d(x , W , strides = [1 , 1 , 1 , 1] , padding='SAME')
# 为了防止跨度过大,信息丢失
def max_pool_2x2(x):
return tf.nn.max_pool(x , ksize = [1 , 2 , 2 , 1] , strides = [1 , 2, 2 , 1] , padding='SAME') #ksize : The size of the window for each dimension of the input tensor.
# define placeholder for inputs to network
with tf.name_scope('inputs'):
xs = tf.placeholder(tf.float32 , [None , 784] , name='x_input')
ys = tf.placeholder(tf.float32 , [None , 10] , name='y_input')
keep_prob = tf.placeholder(tf.float32 , name = 'Dropout_parameter')
x_image = tf.reshape(xs , [-1 , 28 , 28 , 1])
# print(x_image.shape) # [n_samples , 28 , 28 , 1(维度)]
#conv 1 layer
with tf.name_scope('conv_layer_1'):
with tf.name_scope('weigits'):
W_conv1 = weight_variable([5 ,5 , 1 , 32]) # patch 5x5 , in_size = 1, out_size = 32
with tf.name_scope('biases'):
b_conv1 = bias_variable([32])
with tf.name_scope('activation_function'):
h_conv1 = tf.nn.relu(conv2d(x_image , W_conv1) + b_conv1) # outpus size 14x14x32 (padding = SAME)
with tf.name_scope('pooling'):
h_pool1 = max_pool_2x2(h_conv1) # output size 7 x7 x 32 strides[1 ,2 , 2 , 1]
# conv2 layer
with tf.name_scope('conv_layer_2'):
with tf.name_scope('weights'):
W_conv2 = weight_variable([5 ,5 , 32 , 64]) # patch 5x5 , in_size = 32, out_size = 64
with tf.name_scope('biases'):
b_conv2 = bias_variable([64])
with tf.name_scope('activation_function'):
h_conv2 = tf.nn.relu(conv2d(h_pool1 , W_conv2) + b_conv2) # outpus size 28x28x64 (padding = SAME)
with tf.name_scope('pooling'):
h_pool2 = max_pool_2x2(h_conv2) # output size 14 x14 x 32 strides[1 ,2 , 2 , 1]
# func1 layer
with tf.name_scope('layer3'):
with tf.name_scope('W_fc1'):
W_fc1 = weight_variable([7*7*64 , 1024])
with tf.name_scope('b_fc1'):
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2 , [-1 , 7*7*64]) #[n_samples , 7 , 7 , 64] ->> [n , samples , 7*7*64]
with tf.name_scope('activation_func'):
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat , W_fc1) + b_fc1)
with tf.name_scope('Dropout'):
h_fc1_drop = tf.nn.dropout(h_fc1 , keep_prob)
# func 2 layer
with tf.name_scope('layer4'):
with tf.name_scope('W_fc2'):
W_fc2 = weight_variable([1024 , 10])
with tf.name_scope('b_fc2'):
b_fc2 = bias_variable([10])
with tf.name_scope('activation_func'):
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop , W_fc2) + b_fc2)
# the error between prediction and real data
with tf.name_scope('loss'):
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction) , reduction_indices = [1]))
with tf.name_scope('Train'):
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
sess = tf.Session()
merged = tf.merge_all_summaries()
writer = tf.train.SummaryWriter("logs/" , sess.graph)
sess.run(tf.initialize_all_variables())
for i in range(100):
batch_xs , batch_ys = mnist.train.next_batch(1000)
sess.run(train_step , feed_dict = {xs: batch_xs , ys:batch_ys , keep_prob: 0.5})
if i % 50 == 0:
print compute_accuracy(mnist.test.images , mnist.test.labels)