-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnn.py
94 lines (70 loc) · 2.7 KB
/
rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#coding=utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
tf.set_random_seed(1)
mnist = input_data.read_data_sets('MNIST_data' , one_hot=True)
# hyperparameters
lr = 0.001
trainning_iters = 100000
bathc_size = 128
n_inputs = 28
n_steps = 28
n_hidden_units = 128
n_classes = 10
# input
x = tf.placeholder(tf.float32 , [None , n_steps , n_inputs])
y = tf.placeholder(tf.float32 , [None , n_classes])
#define weights and biases
Weights = {
#(28 , 128)
'in': tf.Variable(tf.random_normal([n_inputs , n_hidden_units])) ,
#(128 , 10)
'out': tf.Variable(tf.random_normal([n_hidden_units , n_classes]))
}
biases = {
#(128 , )
'in': tf.Variable(tf.constant(0.1 , shape = [n_hidden_units , ])) ,
#(10 , )
'out': tf.Variable(tf.constant(0.1 , shape = [n_classes , ]))
}
# RNN nn layer
def RNN(X , Weights , biases):
#hidden layer for input to cell
###########################################
#X(128 batch, 28 step , 28 inputs pixels)
# => (128 * 28 , 28 inputs)
X = tf.reshape(X , [-1 , n_inputs])
# X_in=>(128 batch * 28 steps , 128 hidden)
X_in = tf.matmul(X , Weights['in']) + biases['in']
# X_in=>(128 batch , 28 steps , 128 hidden)
X_in = tf.reshape(X_in , [-1 , n_steps , n_hidden_units])
#cell
#######################
lstm_cell =tf.nn.rnn_cell.BasicLSTMCell(n_hidden_units , forget_bias = 1.0 , state_is_tuple = True)
# lstm cell si divided into two parts (c_state , m_state)(主线状态,分线状态)
_init_state = lstm_cell.zero_state(bathc_size , dtype = tf.float32)
outputs , states = tf.nn.dynamic_rnn(lstm_cell , X_in , initial_state = _init_state , time_major = False)
# hidden layer for output from cell
########################################
result = tf.matmul(states[1] , Weights['out']) + biases['out']# states[1]就是最后一个output的结果
## method 2
# unpack to list [(batch , outputs)...] * steps
#outputs = tf.unpack(tf.transpose(outputs , [1 , 0 , 2]))
#result = tf.matmul(outputs[-1] , Weights['out']) + biases['out']
return result
pred = RNN(x , Weights , biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred , y))
train_op = tf.train.AdamOptimizer(lr).minimize(cost)
correct_pred = tf.equal(tf.argmax(pred , 1) , tf.argmax(y , 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred , tf.float32))
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
step = 0
while step * bathc_size < trainning_iters:
batch_xs , batch_ys = mnist.train.next_batch(bathc_size)
batch_xs = batch_xs.reshape([bathc_size , n_steps , n_inputs])
sess.run([train_op] , feed_dict = {x: batch_xs , y: batch_ys})
if step % 20 == 0:
print sess.run(accuracy , feed_dict = {x:batch_xs , y:batch_ys})
step += 1